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Computers are both the creature and the creator of mathematics. They are, in the
apt phrase of Seymour Papert, “mathematics-speaking beings.” J. David Bolter, in his
stimulating book Turing’s Man [Bolter, 1984], calls computers “embodied mathematics.”
Computers shape and enhance the power of mathematics, while mathematics shapes and
enhances the power of computers. Each forces the other to grow and change, creating, in
Thomas Kuhn’s language, a new mathematical paradigm.

Until recently, mathematics was a strictly human endeavor. But suddenly, in a brief
instant on the time scale of mathematics, a new species has entered the mathematical
ecosystem. Computers speak mathematics, but in a dialect that is difficult for some hu-
mans to understand. Their number systems are finite rather than infinite; their addition
is not commutative; and they don’t really understand “zero,” not to speak of “infinity.”
Nonetheless, they do embody mathematics.

The core of mathematics is changing under the ecological onslaught of mathematics-
speaking computers. New specialties in computational complexity, theory of algorithms,
graph theory, and formal logic attest to the impact that computing is having on mathemat-
ical research. As Arthur Jaffe has argued so well (in [Jaffe, 1984]), the computer revolution
is a mathematical revolution.

New Mathematics for a New Age

Computers are discrete, finite machines. Unlike a Turing machine with an infinite tape,
real machines have limits of both time and space. Theirs is not an idealistic Platonic
mathematics, but a mathematics of limited resources. The goal is not just to get a result,
but to get the best result for the least effort. Optimization, efficiency, speed, productivity—
these are essential objectives of modern computer mathematics.

Computers are also logic machines. They embody the fundamental engine of mathema-
tics—rigorous propositional calculus. The first celebrated computer proof was that of the
four-color theorem: the computer served there as a sophisticated accountant, checking out
thousands of cases of reductions. Despite philosophical alarms that computer-based proofs
change mathematics from an a priori to a contingent, fallible subject (see, e.g., [Tymoczko,
1979]), careful analysis reveals that nothing much has really changed. The human practice
of mathematics has always been fallible; now it has a partner in fallibility.

Research on the so-called Feigenbaum constant reveals just how far this evolution has
progressed in just a few years: computer-assisted investigations of families of periodic maps
suggested the presence of a mysterious universal limit, apparently independent of the partic-
ular family of maps. Subsequent theoretical investigations led to proofs that are true hybrids
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of classical analysis and computer programming [Eckmann, 1984], showing that computer-
assisted proofs are possible not just in graph theory, but also in functional analysis.

Computers are also computing machines. By absorbing, transforming, and summarizing
massive quantities of data, computers can simulate reality. No longer need the scientist
build an elaborate wind tunnel or a scale model refinery in order to test engineering designs.
Wherever basic science is well understood, computer models can emulate physical processes
by carrying out instead the process implied by mathematical equations. Whereas mathe-
matical models used to be primarily tools used by theoretical scientists to formulate general
theories, now they are practical tools of enormous value in the everyday world of engineering
and economics.

It has been just over fifty years since Alan Turing developed his seminal scheme of com-
putability [Turing, 1936] in which he argued that machines could do whatever humans might
hope to do. In abstract terms, what he proposed was a universal machine of mathematics
(see [Hodges, 1983] for details). It took two decades of engineering effort to turn Turing’s
abstract ideas into productive real machines. During that same period abstract mathematics
flourished, led by Bourbaki, symbolized by the “generalized abstract nonsense” of category
theory. But with abstraction came power, with rigor came certainty. Once real comput-
ers emerged, the complexity of programs quickly overwhelmed the informal techniques of
backyard programmers. Formal methods became de rigueur ; even the once-maligned cate-
gory theory is now enlisted to represent finite automata and recursive functions (see, e.g.,
[Beckman, 1984], [Lewis, 1981]). Once again, as happened before with physics, mathematics
became more efficacious by becoming more abstract.

The Core of the Curriculum

Twenty-five years ago in the United States the Committee on the Undergraduate Pro-
gram in Mathematics (CUPM) issued a series of reports that led to a gradual standardization
of curricula among undergraduate mathematics departments [CUPM, 1965]. Shortly there-
after, in 1971, Garrett Birkhoff and J. Barkley Rosser presented papers at a meeting of the
Mathematical Association of America concerning predictions for undergraduate mathemat-
ics in 1984. Birkhoff urged increased emphasis on modelling, numerical algebra, scientific
computing, and discrete mathematics. He also advocated increased use of computer methods
in pure mathematics: “Far from muddying the limpid waters of clear mathematical think-
ing, [computers] make them more transparent by filtering out most of the messy drudgery
which would otherwise accompany the working out of specific illustrations.” [Birkhoff, 1972,
p. 651] Rosser emphasized many of the same points, and warned of impending disaster to
undergraduate mathematics if their advice went unheeded: “Unless we revise [mathematics
courses] so as to embody much use of computers, most of the clientele for these courses will
instead be taking computer courses in 1984.” [Rosser, 1972, p. 639]

In the first decade after these words were written, U.S. undergraduate and graduate
degrees in mathematics declined by 50%. The clientele for traditional mathematics migrated
to computer science, and the former CUPM consensus all but disappeared. In 1981 CUPM
issued a new report, this one on the Undergraduate Program in Mathematical Sciences
([CUPM, 1981], reprinted in [CUPM, 1989]). Beyond calculus and linear algebra, they
could agree on no specific content for the core of a mathematics major: “There is no longer
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a common body of pure mathematical information that every [mathematics major] should
know.”

The symbol of reformation became discrete mathematics. Anthony Ralston argued
forcefully the need for change before both the mathematics community [Ralston, 1981] and
the computer science community [Ralston, 1980]. Discrete mathematics, in Ralston’s view,
is the central link between the fields. The advocacy of discrete mathematics rapidly became
quite vigorous (see, e.g., [Kemeny, 1983], [Ralston, 1983,] and [Steen, 1984]), and the Sloan
Foundation funded experimental curricula at six institutions to encourage development of
discrete-based alternatives to standard freshman calculus. The impact of this work can be
seen in the growth of courses and publications: in the five year period from 1985 to 1990,
hundreds of courses were created and over 40 new textbooks in discrete mathematics were
published.

Soon calculus itself came under scrutiny, as a natural force for counter-reformation.
Critics argued that the power of computation and the ubiquity of applications had changed
fundamentally the role of calculus in the practice of mathematics (e.g., [Douglas, 1986;
Steen, 1988]). The National Science Foundation launched diverse projects to reshape the
nature of calculus instruction. Virtually all of these projects feature supporting roles for the
numeric, symbolic, and graphic power of computers.

The need for consensus on the contents of undergraduate mathematics is perhaps the
most important issue facing American college and university mathematics departments
[CUPM, 1989]. On the one hand departments that have a strong traditional major often fail
to provide their students with the robust background required to survive the evolutionary
turmoil in the mathematical sciences. Like the Giant Panda, these departments depend
for survival on a dwindling supply of bamboo—strong students interested in pure mathe-
matics. On the other hand, departments offering flabby composite majors run a different
risk: by avoiding advanced, abstract requirements, they often misrepresent the true source
of mathematical knowledge and power. Like zoo-bred animals unable to forage in the wild,
students who have never been required to master a deep theorem are ill-equipped to master
the significant theoretical complications of real-world computing and mathematics.

Computer Literacy

Mathematical scientists at American institutions of higher education are responsible not
only for the technical training of future scientists and engineers, but also for the technological
literacy of the educated public—of future lawyers, politicians, doctors, educators, and clergy.
Public demand that college graduates be prepared to live and work in a computer age has
caused many institutions to introduce requirements in quantitative or computer literacy.

In 1981 the Alfred P. Sloan Foundation initiated curricular exploration of “the new liberal
arts,” the role of applied mathematical and computer sciences in the education of students
outside technical fields. “The ability to cast one’s thoughts in a form that makes possible
mathematical manipulation and to perform that manipulation . . . [has] become essential in
higher education, and above all in liberal education.” [Koerner, 1981, p. 6] Others echoed this
call for reform of liberal education. David Saxon, President of the University of California
wrote in a Science editorial that liberal education “will continue to be a failed idea as along
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as our students are shut out from, or only superficially acquainted with, knowledge of the
kinds of questions science can answer and those it cannot.” [Saxon, 1982]

Too often these days the general public views computer literacy as a modern substitute
for mathematical knowledge. Unfortunately, this often leads students to superficial courses
that emphasize vocabulary and experiences over concepts and principles [Steen, 1985]. The
advocates of computer literacy conjure images of an electronic society dominated by the
information industries. Their slogan of “literacy” echoes traditional educational values,
conferring the aura but not the logic of legitimacy.

Typical courses in computer literacy are filled with ephemeral details whose intellec-
tual life will barely survive the students’ school years. These courses contain neither a
Shakespeare nor a Newton, neither a Faulkner nor a Darwin; they convey no fundamental
principles nor enduring truths. Computer literacy is more like driver education than like
calculus. It teaches students the prevailing rules of the road concerning computers, but does
not leave them well-prepared for a lifetime of work in the information age.

Algorithms and data structures are to computer science what functions and matrices
are to mathematics. As much of the traditional mathematics curriculum is devoted to
elementary functions and matrices, so beginning courses in computing—by whatever name—
should stress standard algorithms and typical data structures. As early as students study
linear equations they could also learn about stacks and queues; when they move on to conic
sections and quadratic equations, they could in a parallel course investigate linked lists and
binary trees.

Computer languages can (and should) be studied for the concepts they represent—
procedures in Pascal and C, recursion and lists in Lisp—rather than for the syntactic details
of semicolons and line numbers. They should not be undersold as mere technical devices for
encoding problems for a dumb machine, nor oversold as exemplars of a new form of literacy.
Computer languages are not modern equivalents of Latin or French; they do not deal in
nuance and emotion, nor are they capable of persuasion, conviction, or humor. Although
computer languages do represent a new and powerful way to think about problems, they are
not a new form of literacy.

Computer Science

In the United States, computer science programs cover a broad and varied spectrum,
from business-oriented data processing curricula, through management information science,
to theoretical computer science. All of these intersect with the mathematics curriculum,
each in different ways.

To help clarify these conflicting approaches, Mary Shaw of Carnegie Mellon University
put together a composite report on the undergraduate computer science curriculum. This
report is quite forceful about the contribution mathematics makes to the study of computer
science: “The most important contribution a mathematics curriculum can make to computer
science is the one least likely to be encapsulated as an individual course: a deep appreciation
of the modes of thought that characterize mathematics.” [Shaw, 1984, p. 55]

The converse is equally true: one of the more important contributions that computer
science can make to the study of mathematics is to develop in students an appreciation for
the power of abstract methods when applied to concrete situations. Students of traditional
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mathematics used to study a subject called “Real and Abstract Analysis;” students of
computer science now can take a course titled “Real and Abstract Machines.” In the former
“new math,” as well as in modern algebra, students learned about relations, abstract versions
of functions; today business students study “relational data structures” in their computer
courses, and advertisers tout “fully relational” as the latest innovation in business software.

An interesting and pedagogically attractive example of the power of abstraction made
concrete can be seen in the popular electronic spreadsheets that are marketed under such
trade names as Lotus and Excel. Originally designed for accounting, they can as well
emulate cellular automata or the Ising model for ferromagnetic materials [Hayes, 1983].
They can also be “programmed” to carry out most standard mathematical algorithms—the
Euclidean algorithm, the simplex method, Euler’s method for solving differential equations
[Arganbright, 1985]. An electronic spreadsheet—the archetype of applied computing—is a
structured form for recursive procedures—the fundamental tool of algorithmic mathematics.
It is a realization of abstract mathematics, and carries with it much of the power and
versatility of mathematics.

Computers in the Classroom

Just as the introduction of calculators upset the comfortable pattern of primary school
arithmetic, so the spread of computers will upset the traditions of secondary and tertiary
mathematics. This year long division is passe; next year integration will be under attack.

The impact of computing on secondary school mathematics has been the subject of many
discussions in the United States (e.g., [Steen, 1987]). Jim Fey, coordinator of two assessments
([Corbitt, 1985; Fey, 1984]), described these efforts as “an unequivocal dissent from the
spirit and substance of efforts to improve school mathematics that seek broad agreement on
conservative curricula.” [Fey, 1984, p. viii] The new Curriculum and Evaluation Standards
for School Mathematics [NCTM, 1989] of the National Council of Teachers of Mathematics
as well as other recommendations from the U.S. National Academy of Sciences ([NRC,
1989; MSEB, 1990]) set expectations for school mathematics that employ calculators and
computers in every appropriate manner.

Teachers in tune with the computer age seek change in both curriculum and pedagogy.
But the inertia of the system remains high. For example, the 1982 International Assessment
of Mathematics documented that in the United States calculators are never permitted in
one-third of the 8th grade classes, and rarely used in all but 5% of the rest [McKnight, 1987].
Recent data [NAEP, 1991] show some improvement, but still fall well short of the NCTM
recommendations.

Laptop computers are now common—they cost about as much as ten textbooks, but
take up only the space of one. Herb Wilf argues (in [Wilf, 1982]) that it is only a matter
of time before students will carry with them a device to perform all the algorithms of
undergraduate mathematics. Richard Rand, in a survey [Rand, 1984] of applied research
based on symbolic algebra agrees: “It will not be long before computer algebra is as common
to engineering students as the now obsolete slide rule once was.” Just five years after Wilf’s
article appeared, the same journal carried a review [Nievergelt, 1987] of the first pocket
calculator with symbolic algebra capabilities.
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Widespread use of computers that do school and college mathematics will challenge
standard educational practice [Steen, 1990]. For the most part, computers reinforce the
student’s desire for correct answers. In the past, their school uses have primarily extended
the older “teaching machines:” programmed drill with pre-determined branches for all pos-
sible responses. But the recent linking of symbolic algebra programs with so-called “expert
systems” into sophisticated “intelligent tutors” has produced a rich new territory for imag-
inative computer-assisted pedagogy that advocates claim can rescue mathematics teaching
from the morass of rules and template-driven tests (see e.g., [Smith, 1988; Zorn, 1987]).

It is commonplace now to debate the wisdom of teaching skills (such as differentiation)
that computers can do as well or better than humans. Is it really worth spending one month
of every year teaching half of a country’s 18-year-old students how to imitate a computer?
What is not yet so common is to examine critically the effect of applying to mathematics
pedagogy computer systems that are themselves only capable of following rules or matching
templates. Is it wise to devise sophisticated computer systems to teach efficiently precisely
those skills that computers can do better than humans, particularly those skills that make
the computer tutor possible? In other words, since computers can now do the calculations
of algebra and calculus, should we use this power to reduce the curricular emphasis on
calculations or to make the teaching of these calculations more efficient? This is a new
question, with a very old answer.

Let Us Teach Guessing

Forty years ago George Pólya wrote a brief paper with the memorable title “Let Us
Teach Guessing” [Pólya, 1950]. It is not differentiation that our students need to learn, but
the art of guessing. A month spent learning the rules of differentiation reinforces a student’s
ability to learn (and live by) the rules. In contrast, time spent making conjectures about
derivatives will teach a student something about the art of mathematics and the science of
order.

With the aid of the mathematics-speaking computer, students can for the first time learn
college mathematics by discovery. This is an opportunity for pedagogy that mathematics
educators cannot afford to pass up. Mathematics is, after all, the science of order and
pattern, not just a mechanism for grinding out formulas. Students discovering mathematics
gain insight into the discovery of pattern, and slowly build confidence in their own ability to
understand mathematics. Formerly, only students of sufficient genius to forge ahead on their
own could have the experience of discovery. Now with computers as an aid, the majority of
students can experience for themselves the joy of discovery.

Metaphors for Mathematics

Two metaphors from science are useful for understanding the relation between computer
science, mathematics, and education. Cosmologists long debated two theories for the origin
of the universe—the Big Bang theory, and the theory of Continuous Creation. Current
evidence tilts the cosmology debate in favor of the Big Bang. Unfortunately, this is all too
often the public image of mathematics as well, even though in mathematics the evidence
favors Continuous Creation.
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The impact of computer science on mathematics and of mathematics on computer science
is the most powerful evidence available to beginning students that mathematics is not just the
product of an original Euclidean big bang, but is continually created in response to challenges
both internal and external. Students today, even beginning students, can learn things that
were simply not known twenty years ago. We must not only teach new mathematics and new
computer science, but we must teach as well the fact that this mathematics and computer
science is new. That’s a very important lesson for the public to learn.

The other apt metaphor for mathematics comes from the history of the theory of evolu-
tion. Prior to Darwin, the educated public believed that forms of life were static, just as the
educated public of today assumes that the forms of mathematics are static, laid down by
Euclid, Newton, and Einstein. Students learning mathematics from contemporary textbooks
are like the pupils of Linnaeus, the great eighteenth-century Swedish botanist: they see a
static, pre-Darwinian discipline that is neither growing nor evolving. Learning mathematics
for most students is an exercise in classification and memorization, in labeling notations,
definitions, theorems, and techniques that are laid out in textbooks as so much flora in a
wondrous if somewhat abstract Platonic universe.

Students rarely realize that mathematics continually evolves in response to both inter-
nal and external pressures. Notations change; conjectures emerge; theorems are proved;
counterexamples are discovered. Indeed, the passion for intellectual order combined with
the pressure of new problems—especially those posed by the computer—force researchers to
continually create new mathematics and archive old theories.

The practice of computing and the theory of computer science combine to change math-
ematics in ways that are highly visible and attractive to students. This continual change
reveals to students the living character of mathematics, restoring to the educated public some
of what the experts have always known—that mathematics is a living, evolving component
of human culture.
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