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“He just saw further than the rest of us.” The subject of this remark,
cyberneticist Norbert Wiener, is one of many exceptional scientists who
broke the bonds of tradition to create entirely new domains for math-
ematicians to explore. Seeing and revealing hidden patterns are what
mathematicians do best. Each major discovery opens new areas rich
with potential for further exploration. In the last century alone, the
number of mathematical disciplines has grown at an exponential rate;
examples include the ideas of Georg Cantor on transfinite sets, Sonja
Kovalevsky on differential equations, Alan Turing on computability,
Emmy Noether on abstract algebra, and, most recently, Benoit Mandel-
brot on fractals.

To the public these new domains of mathematics are terra incognita.
Mathematics, in the common lay view, is a static discipline based on
formulas taught in the school subjects of arithmetic, geometry, algebra,
and calculus. But outside public view, mathematics continues to grow
at a rapid rate, spreading into new fields and spawning new applications.
The guide to this growth is not calculation and formulas but an open-
ended search for pattern.

Mathematics has traditionally been described as the science of num-
ber and shape. The school emphasis on arithmetic and geometry is
deeply rooted in this centuries-old perspective. But as the territory ex-
plored by mathematicians has expanded—into group theory and statis-
tics, into optimization and control theory—the historic boundaries of
mathematics have all but disappeared. So have the boundaries of its
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applications: no longer just the language of physics and engineering,
mathematics is now an essential tool for banking, manufacturing, social
science, and medicine. When viewed in this broader context, we see
that mathematics is not just about number and shape but about pattern
and order of all sorts. Number and shape—arithmetic and geometry—
are but two of many media in which mathematicians work. Active
mathematicians seek patterns wherever they arise.

Thanks to computer graphics, much of the mathematician’s search for
patterns is now guided by what one can really see with the eye, whereas
nineteenth-century mathematical giants like Gauss and Poincaré had
to depend more on seeing with their mind's eye. “I see” has always
had two distinct meanings: to perceive with the eye and to understand
with the mind. For centuries the mind has dominated the eye in the
hierarchy of mathematical practice; today the balance is being restored
as mathematicians find new ways to see patterns, both with the eye and
with the mind.

Change in the practice of mathematics forces re-examination of math-
ematics education. Not just computers, but also new applications and
new theories have expanded significantly the role of mathematics in sci-
ence, business, and technology. Students who will live and work using
computers as a routine tool need to learn a different mathematics than
their forefathers. Standard school practice, rooted in traditions that are
several centuries old, simply cannot prepare students adequately for the
mathematical needs of the twenty-first century.

Shortcomings in the present record of mathematical education also
provide strong forces for change. Indeed, since new developments build
on fundamental principles, it is plausible, as many observers often sug-
gest, that one should focus first on restoring strength to time-honored
fundamentals before embarking on reforms based on changes in the
contemporary practice of mathematics. Public support for strong ba-
sic curricula reinforces the wisdom of the past—that traditional school
mathematics, if carefully taught and well learned, provides sound prepa-
ration both for the world of work and for advanced study in mathemat-
ically based fields.

The key issue for mathematics education is not whether to teach fun-
damentals but which fundamentals to teach and how to teach them.
Changes in the practice of mathematics do alter the balance of priori-
ties among the many topics that are important for numeracy. Changes
in society, in technology, in schools—among others—will have great im-
pact on what will be possible in school mathematics in the next century.
All of these changes will affect the fundamentals of school mathematics.

To develop effective new mathematics curricula, one must attempt
to foresee the mathematical needs of tomorrow’s students. It is the
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present and future practice of mathematics—at work, in science, in
research—that should shape education in mathematics. To prepare ef-
fective mathematics curricula for the future, we must look to patterns
in the mathematics of today to project, as best we can, just what is and
what is not truly fundamental.

FUNDAMENTAL MATHEMATICS

School tradition has it that arithmetic, measurement, algebra, and
a smattering of geometry represent the fundamentals of mathematics.
But there is much more to the root system of mathematics—deep ideas
that nourish the growing branches of mathematics. One can think of
specific mathematical structures:

¢ Numbers Shapes
* Algorithms Functions
* Ratios Data
or attributes:
¢ Linear Random
* Periodic Maximum
* Symmetric Approximate
¢ Continuous Smooth
or actions:
¢ Represent Model
¢ Control Experiment
* Prove Classify
¢ Discover Visualize
* Apply Compute
or abstractions:
* Symbols Equivalence
* Infinity Change
* Optimization Similarity
* Logic Recursion
or attitudes:
*  Wonder Beauty
* Meaning Reality
or behaviors:
¢ Motion Stability
* Chaos Convergence
* Resonance Bifurcation

¢ Iteration

Oscillation
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or dichotomies:

¢ Discrete vs. continuous

* Finite vs. infinite

* Algorithmic vs. existential
* Stochastic vs. deterministic
* Exact vs. approximate

These diverse perspectives illustrate the complexity of structures that
support mathematics. From each perspective one can identify vari-
ous strands that have within them the power to develop a significant
mathematical idea from informal intuitions of early childhood all the
way through school and college and on into scientific or mathematical
research. A sound education in the mathematical sciences requires en-
counter with virtually all of these very different perspectives and ideas.

Traditional school mathematics picks very few strands (e.g., arith-
metic, geometry, algebra) and arranges them horizontally to form the
curriculum: first arithmetic, then simple algebra, then geometry, then
more algebra, and finally—as if it were the epitome of mathematical
knowledge—calculus. This layer-cake approach to mathematics educa-
tion effectively prevents informal development of intuition along the
multiple roots of mathematics. Moreover, it reinforces the tendency
to design each course primarily to meet the prerequisites of the next
course, making the study of mathematics largely an exercise in delayed
gratification. To help students see clearly into their own mathematical
futures, we need to construct curricula with greater vertical continuity,
to connect the roots of mathematics to the branches of mathematics in
the educational experience of children.

School mathematics is often viewed as a pipeline for human resources
that flows from childhood experiences to scientific careers. The layers
in the mathematics curriculum correspond to increasingly constricted
sections of pipe through which all students must pass if they are to
progress in their mathematical and scientific education. Any imped-
iment to learning, of which there are many, restricts the flow in the
entire pipeline. Like cholesterol in the blood, mathematics can clog the
educational arteries of the nation.

In contrast, if mathematics curricula featured multiple parallel strands,
each grounded in appropriate childhood experiences, the flow of human
resources would more resemble the movement of nutrients in the roots
of a mighty tree—or the rushing flow of water from a vast watershed—
than the increasingly constricted confines of a narrowing artery or pipe-
line. Different aspects of mathematical experience will attract children
of different interests and talents, each nurtured by challenging ideas
that stimulate imagination and promote exploration. The collective
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effect will be to develop among children diverse mathematical insight
in many different roots of mathematics.

FIVE SAMPLES

This volume offers five examples of the developmental power of deep
mathematical ideas: dimension, quantity, uncertainty, shape, and
change. Each chapter explores a rich variety of patterns that can be
introduced to children at various stages of school, especiully at the
youngest ages when unfettered curiosity remains high. Those who de-
velop curricula will find in these essays many valuable new options for
school mathematics. Those who help determine education policy will
see in these essays examples of new standards for excellence. And ev-
eryone who is a parent will find in these essays numerous examples of
important and effective mathematics that could excite the imagination
of their children.

Each chapter is written by a distinguished scholar who explains in
everyday language how fundamental ideas with deep roots in the math-
ematical sciences could blossom in schools of the future. Although
not constrained by particular details of present curricula, each essay
is faithful to the development of mathematical ideas from childhood to
adulthood. In expressing these very different strands of mathematical
thought, the authors illustrate ideals of how mathematical ideas should
be developed in children.

In contrast to much present school mathematics, these strands are
alive with action: pouring water to compare volumes, playing with pen-
dulums to explore dynamics, counting candy colors to grasp variation,
building kaleidoscopes to explore symmetry. Much mathematics can
be learned informally by such activities long before children reach the
point of understanding algebraic formulas. Early experiences with such
patterns as volume, similarity, size, and randomness prepare students
both for scientific investigations and for more formal and logically pre-
cise mathematics. Then when a careful demonstration emerges in class
some years later, a student who has benefited from substantial early in-
formal mathematical experiences can say with honest pleasure “Now I
see why that’s true.”

CONNECTIONS

The essays in this volume are written by five different authors on five
distinct topics. Despite differences in topic, style, and approach, these
essays have in common the lineage of mathematics: each is connected
in myriad ways to the family of mathematical sciences. Thus it should
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come as no surprise that the essays themselves are replete with inter-
connections, both in deep structure and even in particular illustrations.
Some examples:

MEASUREMENT is an idea treated repeatedly in these essays. Experi-
ence with geometric quantities (length, area, volume), with arithmetic
quantities (size, order, labels), with random variation (spinners, coin
tosses, SAT scores), and with dynamic variables (discrete, continuous,
chaotic) all pose special challenges to answer a very child-like question:
“How big is it?” One sees from many examples that this question is
fundamental: it is at once simple yet subtle, elementary yet difficult.
Students who grow up recognizing the complexity of measurement may
be less likely to accept unquestioningly many of the common misuses
of numbers and statistics. Learning how to measure is the beginning of
numeracy.

SYMMETRY is another deep idea of mathematics that turns up over
and over again, both in these essays and in all parts of mathematics.
Sometimes it is the symmetry of the whole, such as the hypercube (a
four-dimensional cube), whose symmetries are so numerous that it is
hard to count them all. (But with proper guidance, young children us-
ing a simple pea-and-toothpick model can do it.) Other times it is the
symmetry of the parts, as in the growth of natural objects from repet-
itive patterns of molecules or cells. In still other cases it is symmetry
broken, as in the buckling of a cylindrical beam or the growth of a
fertilized egg to a (slightly) asymmetrical adult animal. Unlike mea-
surement, symmetry is seldom studied much in school at any level, yet
it is equally fundamental as a model for explaining features of such di-
verse phenomena as the basic forces of nature, the structure of crystals,
and the growth of organisms. Learning to recognize symmetry trains
the mathematical eye.

VISUALIZATION recurs in many examples in this volume and is one
of the most rapidly growing areas of mathematical and scientific re-
search. The first step in data analysis is the visual display of data to
search for hidden patterns. Graphs of various types provide visual dis-
play of relations and functions; they are widely used throughout science
and industry to portray the behavior of one variable (e.g., sales) that
is a function of another (e.g., advertising). For centuries artists and
map makers have used geometric devices such as projection to repre-
sent three-dimensional scenes on a two-dimensional canvas or sheet of
paper. Now computer graphics automate these processes and let us
explore as well the projections of shapes in higher-dimensional space.
Learning to visualize mathematical patterns enlists the gift of sight as
an invaluable ally in mathematical education.
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ALGORITHMS are recipes for computation that occur in every corner
of mathematics. A common iterative procedure for projecting popula-
tion growth reveals how simple orderly events can lead to a variety of
behaviors—explosion, decay, repetition, chaos. Exploration of combi-
natorial patterns in geometric forms enables students to project geomet-
ric structures in higher dimensions where they cannot build real mod-
els. Even common elementary school algorithms for arithmetic take on
a new dimension when viewed from the perspective of contemporary
mathematics: rather than stressing the mastery of specific algorithms—
which are now carried out principally by calculators or computers—
school mathematics can instead emphasize more fundamental attributes
of algorithms (e.g., speed, efficiency, sensitivity) that are essential for
intelligent use of mathematics in the computer age. Learning to think
algorithmically builds contemporary mathematical literacy.

Many other connective themes recur in this volume, including link-
ages of mathematics with science, classification as a tool for understand-
ing, inference from axioms and data, and—most importantly—the role
of exploration in the process of learning mathematics. Connections give
mathematics power and help determine what is fundamental. Pedagog-
ically, connections permit insight developed in one strand to infuse into
others. Multiple strands linked by strong interconnections can develop
mathematical power in students with a wide variety of enthusiasms and
abilities.

GAINING PERSPECTIVE

Newton credited his extraordinary foresight in the development of
calculus to the accumulated work of his predecessors: “If I have seen
further it is by standing on the shoulders of giants.” Those who develop
mathematics curricula for the twenty-first century will need similar fore-
sight.

Not since the time of Newton has mathematics changed as much as it
has in recent years. Motivated in large part by the introduction of com-
puters, the nature and practice of mathematics have been fundamentally
transformed by new concepts, tools, applications, and methods. Like
the telescope of Galileo’s era that enabled the Newtonian revolution, to-
day’s computer challenges traditional views and forces re-examination
of deeply held values. As it did three centuries ago in the transition
from Euclidean proofs to Newtonian analysis, mathematics once again
is undergoing a fundamental reorientation of procedural paradigms.

Examples of fundamental change abound in the research literature
of mathematics and in practical applications of mathematical methods.
Many are given in the essays in this volume:
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* Deterministic phenomena often exhibit random behavior.

¢ Dimensionality is not just a property of space but also a means
of ordering knowledge.

* Repetition can be the source of accuracy, symmetry, or chaos.

* Visual representation yields insights that often remain hidden
from strictly analytic approaches.

¢ Diverse patterns of change exhibit significant underlying regular-

ity.

By examining many different strands of mathematics, we gain per-
spective on common features and dominant ideas. Recurring concepts
(e.g., number, function, algorithm) call attention to what one must know
in order to understand mathematics; common actions (e.g., represent,
discover, prove) reveal skills that one must develop in order to do math-
ematics. Together, concepts and actions are the nouns and verbs of the
language of mathematics.

What humans do with the language of mathematics is to describe pat-
terns. Mathematics is an exploratory science that seeks to understand
every kind of pattern—patterns that occur in nature, patterns invented
by the human mind, and even patterns created by other patterns. To
grow mathematically, children must be exposed to a rich variety of pat-
terns appropriate to their own lives through which they can see variety,
regularity, and interconnections.

The essays in this volume provide five extended case studies that ex-
emplify how this can be done. Other authors could just as easily have
described five or ten different examples. The books and articles listed
below are replete with additional examples of rich mathematical ideas.
What matters in the study of mathematics is not so much which partic-
ular strands one explores, but the presence in these strands of significant
examples of sufficient variety and depth to reveal patterns. By encour-
aging students to explore patterns that have proven their power and
significance, we offer them broad shoulders from which they will see
farther than we can.
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