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LIVING WITH A NEW MATHEMATICAL SPECIES
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Computers are both the creature and the creator of
mathematics. They are, in the apt phrase of Seymour Papert,
"mathematics-speaking beings". More recently J. David Bolter in his
stimulating book Turing's Man [4] calls computers "embodied
mathematics". Computers shape and enhance the power of mathematics,
while mathematics shapes and enhances the power of computers. Each
forces the other to grow and change, creating, in Thomas Kuhn's
language, a new mathematical paradigm.

Until recently, mathematics was a strictly human endeavor. But
suddenly, in a brief instant on the time scale of mathematics, a new
species has entered the mathematical ecosystem. Computers speak
mathematics, but in a dialect that is difficult for some humans to
understand. Their number systems are finite rather than infinite;
their addition is not commutative; and they don't really understand
"zero", not to speak of "infinity". Nonetheless, they do embody
mathematics.

The core of mathematics is changing under the ecological onslaught of
mathematics-speaking computers. New specialties in computational
complexity, theory of algorithms, graph theory, and formal logic attest
to the impact that computing is having on mathematical research. As
Arthur Jaffe has argued so well (in [12]), the computer revolution is a
mathematical revolution.

New Mathematics for a New Age
Computers are discrete, finite machines. Unlike a Turing

machine with an infinite tape, real machines have limits of both time
and space. Theirs is not an idealistic Platonic mathematics, but a
mathematics of limited resources. The goal is not just to get a
result, but to get the best result for the least effort. Optimization,
efficiency, speed, productivity—these are essential objectives of
modern computer mathematics.

Computers are also logic machines. They embody the fundamental engine
of mathematics—rigorous propositional calculus. The first celebrated
computer proof was that of the four-color theorem: the computer served
there as a sophisticated accountant, checking out thousands of cases of
reductions. Despite philosophical alarms that computer-based proofs
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change mathematics from an a priori to a contingent, fallible subject
(see, e.g., [27]), careful analysis reveals that nothing much has
really changed. The human practice of mathematics has always been
fallible; now it has a partner in fallibility.

Recent work on the mysterious Feigenbaum constant reveals just how far
this evolution has progressed in just eight years: computer-assisted
investigations of families of periodic maps suggested the presence of a
mysterious universal limit, apparently independent of the particular
family of maps. Subsequent theoretical investigations led to proofs
that are true hybrids of classical analysis and computer programming
[8], showing that computer-assisted proofs are possible not just in
graph theory, but also in functional analysis.

Computers are also computing machines. By absorbing, transforming, and
summarizing massive quantities of data, computers can simulate reality.
No longer need the scientist build an elaborate wind tunnel or a scale
model refinery in order to test engineering designs. Wherever basic
science is well understood, computer models can emulate physical
processes by carrying out instead the process implied by mathematical
equations. Whereas mathematical models used to be primarily tools used
by theoretical scientists to formulate general theories, now they are
practical tools of enormous value in the everyday world of engineering
and economics.

It has been fifty years since Alan Turing developed his seminal scheme
of computability [26], in which he argued that machines could do
whatever humans might hope to do. In abstract terms, what he proposed
was a universal machine of mathematics (see [11] for details). It took
two decades of engineering effort to turn Turing's abstract ideas into
productive real machines. During that same period abstract mathematics
flourished, led by Bourbaki, symbolized by the "generalized abstract
nonsense" of category theory. But with abstraction came power, with
rigor came certainty. Once real computers emerged, the complexity of
programs quickly overwhelmed the informal techniques of backyard
programmers. Formal methods became de rigueur; even the once-maligned
category theory is now enlisted to represent finite automata and
recursive functions (see, e.g., [2]). Once again, as happened before
with physic8, mathematics became more efficacious by becoming more
abstract.

The Core of the Curriculum
Twenty years ago in the United States the Committee on the

Undergraduate Program in Mathematics (CUPM) issued a series of reports
that led to a gradual standardization of curricula among undergraduate
mathematics departments [5]. Shortly thereafter, in 1971, Garrett
Birkhoff and J. Barkley Rosser presented papers at a meeting of the
Mathematical Association of America concerning predictions for
undergraduate mathematics in 1984. Birkhoff urged increased emphasis
on modelling, numerical algebra, scientific computing, and discrete
mathematics. He also advocated increased use of computer methods in
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pure mathematics: "Far from muddying the limpid waters of clear
mathematical thinking, [computers] make them more transparent by
filtering out most of the messy drudgery which would otherwise
accompany the working out of specific illustrations." [3, p. 651]
Rosser emphasized many of the same points, and warned of impending
disaster to undergraduate mathematics if their advice went unheeded:
"Unless we revise [mathematics courses] so as to embody much use of
computers, most of the clientele for these courses will instead be
taking computer courses in 1984." [21, p. 639]

In the decade since these words were written, U.S. undergraduate and
graduate degrees in mathematics have declined by 50%. The clientele
for traditional mathematics has indeed migrated to computer science,
and the former CUPM consensus is all but shattered. Five years ago
CUPM issued a new report, this one on the Undergraduate Program in
Mathematical Sciences [6]. Beyond calculus and linear algebra, they
could agree on no specific content for the core of a mathematics major:
"There is no longer a common body of pure mathematical information that
every [mathematics major] should know."

The symbol of reformation has become discrete mathematics. Several
years ago Anthony Ralston argued forcefully the need for change before
both the mathematics community [17] and the computer science community
[18]. Discrete mathematics, in Ralston's view, is the central link
between the fields. The advocacy of discrete mathematics rapidly
became quite vigorous (see, e.g., [19] and [24]), and the Sloan
Foundation funded experimental curricula at six institutions to
encourage development of discrete-based alternatives to standard
freshman calculus.

The need for consensus on the contents of undergraduate mathematics is
perhaps the most important issue facing American college and university
mathematics departments. On the one hand departments that have a
strong traditional major often fail to provide their students with the
robust background required to survive the evolutionary turmoil in the
mathematical sciences. Like the Giant Panda, these departments depend
for survival on a dwindling supply of bamboo—strong students
interested in pure mathematics. On the other hand, departments
offering flabby composite majors run a different risk: by avoiding
advanced, abstract requirements, they often misrepresent the true
source of mathematical knowledge and power. Like zoo-bred animals
unable to forage in the wild, students who have never been required to
master a deep theorem are ill-equipped to master the significant
theoretical complications of real-world computing and mathematics.

Computer Literacy
Mathematical scientists at American institutions of higher

education are responsible not only for the technical training of future
scientists and engineers, but also for the technological literacy of
laymen—of future lawyers, politicians, doctors, educators, and clergy.
Public demand that college graduates be prepared to live and work in a
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computer age has caused many institutions to introduce requirements in
quantitative or computer literacy.

In 1981 the Alfred P. Sloan foundation initiated curricular exploration
of "the new liberal arts", the role of applied mathematical and
computer sciences in the education of students outside technical
fields. "The ability to cast one's thoughts in a form that makes
possible mathematical manipulation and to perform that manipulation ...
[has] become essential in higher education, and above all in liberal
education." [14, p. 6] Others echoed this call for reform of liberal
education. David Saxon, President of the University of California
wrote in a Science editorial that liberal education "will continue to
be a failed idea as along as our students are shut out from, or only
superficially acquainted with, knowledge of the kinds of questions
science can answer and those it cannot." [22]

Too often these days the general public views computer literacy as a
modern substitute for mathematical knowledge. Unfortunately, this
often leads students to superficial courses that emphasize vocabulary
and experiences over concepts and principles. The advocates of
computer literacy conjure images of an electronic society dominated by
the information industries. Their slogan of "literacy" echoes
traditional educational values, conferring the aura but not the logic
of legitimacy.

Typical courses in computer literacy are filled with ephemeral details
whose intellectual life will barely survive the students' school years.
These courses contain neither a Shakespeare nor a Newton, neither a
Faulkner nor a Darwin; they convey no fundamental principles nor
enduring truths. Computer literacy is more like driver education than
like calculus. It teaches students the prevailing rules of the road
concerning computers, but does not leave them well prepared for a
lifetime of work in the information age.

Algorithms and data structures are to computer science what functions
and matrices are to mathematics. As much of the traditional
mathematics curriculum is devoted to elementary functions and matrices,
so beginning courses in computing—by whatever name—should stress
standard algorithms and typical data structures. As early as students
study linear equations they could also learn about stacks and queues;
when they move on to conic sections and quadratic equations, they could
in a parallel course investigate linked lists and binary trees.

Computer languages can (and should) be studied for the concepts they
represent—procedures in Pascal, recursion and lists for Lisp—rather
than for the syntactic details of semicolons and line numbers. They
should not be undersold as mere technical devices for encoding problems
for a dumb machine, nor oversold as exemplars of a new form of
literacy. Computer languages are not modern equivalents of Latin or
French; they do not deal in nuance and emotion, nor are they capable
of persuasion, conviction, or humor. Although computer languages do
represent a new and powerful way to think about problems, they are not
a new form of literacy.
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Computer Science
In the United States, computer science programs cover a

broad and varied spectrum, from business-oriented data processing
curricula, through management information science, to theoretical
computer science. All of these intersect with the mathematics
curriculum, each in different ways.

Recently Mary Shaw of Carnegie Mellon University put together a
composite report on the undergraduate computer science curriculum.
This report is quite forceful about the contribution mathematics makes
to the study of computer science: "The most important contribution a
mathematics curriculum can make to computer science is the one least
likely to be encapsulated as an individual course: a deep appreciation
of the modes of thought that characterize mathematics•" [23. p. 55]

The converse is equally true: one of the more important contributions
that computer science can make to the study of mathematics is to
develop in students an appreciation for the power of abstract methods
when applied to concrete situations. Students of traditional
mathematics used to study a subject called "Real and Abstract
Analysis"; students of computer science now can take a course titled
"Real and Abstract Machines". In the former "new math", as well as in
modern algebra, students learned about relations, abstract versions of
functions; today business students study "relational data structures"
in their computer courses, and advertisers tout "fully relational" as
the latest innovation in business software.

An interesting and pedagogically attractive example of the power of
abstraction made concrete can be seen in the popular electronic
spreadsheets that are marketed under such trade names as Lotus and
VisiCalc. Originally designed for accounting, they can as well emulate
cellular automata or the Ising model for ferromagnetic materials [10].
They can also be "programmed" to carry out most standard mathematical
algorithms—the Euclidean algorithm, the simplex method, Euler's method
for solving differential equations [1]. An electronic spreadsheet—the
archetype of applied computing—is a structured form for recursive
procedures—the fundamental tool of algorithmic mathematics. It is a
realization of abstract mathematics, and carries with it much of the
power and versatility of mathematics.

Computers in the Classroom
Just as the introduction of calculators upset the

comfortable pattern of primary school arithmetic, so the spread of
computers will upset the traditions of secondary and tertiary
mathematics. This year long division is passe; next year integration
will be under attack.

The impact of computing on secondary school mathematics has been the
subject of many recent discussions in the United States. Jim Fey,
coordinator of two of the most recent assessments ([7], [9]), described
these efforts as "an unequivocal dissent from the spirit and substance
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of efforts to improve school mathematics that seek broad agreement on
conservative curricula." [9, p. viii] Teachers in tune with the
computer age seek change in both curriculum and pedagogy. But the
inertia of the system remains high. For example, the recent
International Assessment of Mathematics documented that in the United
States calculators are never permitted in one-third of the 8th grade
classes, and rarely used in all but 5% of the rest [25, p. 18].

Lap size computers are now common—they cost about as much as ten
textbooks, but take up only the space of one. Herb Wilf argues (in
[28]) that it is only a matter of time before students will carry with
them a device to perform all the algorithms of undergraduate
mathematics. Richard Rand, in a survey [20] of applied research based
on symbolic algebra agrees: "It will not be long before computer
algebra is as common to engineering students as the now obsolete slide
rule once was."

Widespread use of computers that do school mathematics will challenge
standard educational practice. For the most part, computers reinforce
the student's desire for correct answers. In the past, their school
uses have primarily extended the older "teaching machines": programmed
drill with pre-determined branches for all possible responses. But the
recent linking of symbolic algebra programs with so-called "expert
systems" into sophisticated "intelligent tutors" has produced a rich
new territory for imaginative computer-assisted pedagogy that advocates
claim can rescue mathematics teaching from the morass of rules and
template-driven tests.

It is commonplace now to debate the wisdom of teaching skills (such as
differentiation) that computers can do as well or better than humans.
Is it really worth spending one month of every year teaching half of a
country's 18 year old students how to imitate a computer? What is not
yet so common is to examine critically the effect of applying to
mathematics pedagogy computer systems that are themselves only capable
of following rules or matching templates. Is it wise to devise
sophisticated computer systems to teach efficiently precisely those
skills that computers can do better than humans, particularly those
skills that make the computer tutor possible? In other words, since
computers can now do the calculations of algebra and calculus, should
we use this power to reduce the curricular emphasis on calculations or
to make the teaching of these calculations more efficient? This is a
new question, with a very old answer.

Let Us Teach Guessing
35 years ago George Polya wrote a brief paper with the

memorable title "Let Us Teach Guessing" [16]. It is not differenti-
ation that our students need to learn, but the art of guessing. A
month spent learning the rules of differentiation reinforces a
student's ability to learn (and live by) the rules. In contrast, time
spent making conjectures about derivatives will teach a student
something about the art of mathematics and the science of order.
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With the aid of the mathematics-speaking computer, students can for the
first time learn college mathematics by discovery. This is an
opportunity for pedagogy that mathematics educators cannot afford to
pass up. Mathematics is, after all, the science of order and pattern,
not just a mechanism for grinding out formulas. Students discovering
mathematics gain insight into the discovery of pattern, and slowly
build confidence in their own ability to understand mathematics.
Formerly, only students of sufficient genius to forge ahead on their
own could have the experience of discovery. Now with computers as an
aid, the majority of students can experience for themselves the joy of
discovery.

Metaphors for Mathematics
Two metaphors from science are useful for understanding the

relation between computer science, mathematics, and education.
Cosmologists long debated two theories for the origin of the universe—
the Big Bang theory, and the theory of Continuous Creation. Current
evidence tilts the cosmology debate in favor of the Big Bang.
Unfortunately, this is all too often the public image of mathematics as
well, even though in mathematics the evidence favors Continuous
Creation.

The impact of computer science on mathematics and of mathematics on
computer science is the most powerful evidence available to beginning
students that mathematics is not just the product of an original
Euclidean big bang, but is continually created in response to
challenges both internal and external. Students today, even beginning
students, can learn things that were simply not known 20 years ago. We
must not only teach new mathematics and new computer science, but we
must teach as well the fact that this mathematics and computer science
is new. That 8 a very important lesson for laymen to learn.

The other apt metaphor for mathematics comes from the history of the
theory of evolution. Prior to Darwin, the educated public believed
that forms of life were static, just as the educated public of today
assumes that the forms of mathematics are static, laid down by Euclid,
Newton and Einstein. Students learning mathematics from contemporary
textbooks are like the pupils of Linnaeus, the great eighteenth century
Swedish botanist: they see a static, pre-Darwinian discipline that is
neither growing nor evolving. Learning mathematics for most students
is an exercise in classification and memorization, in labelling
notations, definitions, theorems, and techniques that are laid out in
textbooks as so much flora in a wonderous if somewhat abstract Platonic
universe.

Students rarely realize that mathematics continually evolves in
response to both internal and external pressures. Notations change;
conjectures emerge; theorems are proved; counterexamples are
discovered. Indeed, the passion for intellectual order combined with
the pressure of new problems—especially those posed by the computer—
force researchers to continually create new mathematics and archive old
theories.
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The practice of computing and the theory of computer science combine to
change mathematics in ways that are highly visible and attractive to
students. This continual change reveals to students and laymen the
living character of mathematics, restoring to the educated public some
of what the experts have always known—that mathematics is a living,
evolving component of human culture.
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