
Computex! Cakulus 

"Awesome ... invaluable ... unbeliev- 
able...." These are the assessments by 
normally taciturn research scientists of 
symbolic computer algebra, a group of 
programs that allows computers to carry 
out theoretical (rather than merely nu- 
merical) calculations. These programs do 
in a few brief minutes virtually all mathe- 
matics that most engineers and scientists 
know; their ability to slog through theoret- 
ical solutions to large systems of equa- 
tions has already led to advances in gravi- 
tation and high energy physics. "It is only a 
matter of time before these programs pro- 
vide major breakthroughs," says physicist 
Richard Pavelle of Massachusetts Institute 
of Technology's Lincoln Labs in Lexington, 
Mass. 

Although computer prophets have been 
touting the potential of artificial (ma- 
chine) intelligence for several decades, 
the major triumphs of this research en- 
deavor have been limited to the narrow 
fields, of checkers and chess. Major com- 
mercial and scientific uses of the com- 
puter -data processing, word processing 
and "number crunching" - have little to 
do with intelligent thought. Computer 
algebra systems, in contrast, manipulate 
abstract symbolic mathematical expres- 
sions. They do algebra, and calculus, and 
linear algebra; indeed, they do virtually 
everything taught in the first two years of 
university mathematics. 

Traditional scientific computing deals 
with numbers; computer algebra deals 
with symbols. Asked to solve the quadratic 
equation 4x2 - 8x + 1 = 0, traditional 
computer programs will yield the two nu- 
merical answers: .133975 and 1.866025. But 
a computer algebra program will respond, 
like any good high school algebra student, 
with the quadratic formula: 

8 + V -16 1 + 1 V3 
8 2 

Moreover - and this is what sets com- 
puter algebra apart from previous scien- 
tific programing -it can equally well solve 
the generic equation ax2 + bx + c = 0: 

x b + _b2- 4ac 
2a 

The quadratic formula is, of course, a 
rather elementary part of mathematics. 
Yet computer algebra systems can do 
higher mathematics with equal ease. They 
can factor polynomials, simplify expres- 
sions, differentiate functions, solve equa- 
tions, expand functions into Taylor series, 
invert matrices and -the coup de grace- 
integrate functions. It is this latter ability 
that inspires awe in the knowledgeable 
beholder. 

Anyone who has studied university cal- 
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They could calculate or they could analyze 
harmonic phenomena. Even the Institute 
for Advanced Study Computer of 1952 was 
billed as a "tool for heuristic investigations 
in pure mathematics where the burden of 
algebraic computation is prohibitive by 
normal human methods. " Now computers 
are beginning to do the algebra and 
analysis themselves. These historic ones 
are (counterclockwise from top right) 
Wilhelm Schickard~ calculator of 1623, the 
Hollerith tabulating machine that 
crunched the U.S. 1890 census returns, the 
Michelson-Stratton harmonic analyzer of 
1898 that solved Fourier series and the LAs 
shown with John von Neumann (left) andJ. 
Robert Oppenheimer 

to be as much art as science. 
That computers have mastered this art 

is due to the successful completion in the 
1960s of a two-hundred-year research ef- 
fort into the mysteries of symbolic integra- 
tion. Early in the nineteenth century Pierre 
Simon de la Place formulated a conjecture 
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about the integral of algebraic functions. 
This conjecture, which was proved around 
1830 by Niels Henrik Abel, led Joseph 
Liouville to formulate a general theorem 
about the integral of any elementary func- 
tion - those built up from the standard 
scientific functions such as sin, cos, log, 
exp, etc. Liouville's theorem tells which 
functions can be integrated and what form 
the answers can take, but it does not con- 
tain any useful clue about how the answer 
can be found. 

The missing ingredient -an algorithm 
for integration-was finally completed in 
1968 by Robert H. Risch of the System De- 
velopment Corp. in Santa Monica, Calif., 
just as work was beginning at MIT and 
other places on symbolic computer alge- 
bra. Risch's algorithm is the Rosetta Stone 
of elementary calculus: It replaced mys- 
tery with mechanism, thus solving the last 
major puzzle in the syllabus of university 
calculus. 

Translating the theoretical algorithms 
into computer programs took another 
several years. One of the largest and best 
known of these systems is MACSYMA, de- 
veloped at MIT between 1968 and 1971 by 
Carl Engleman, Bill Martin and Joel Moses. 
MACSYMA now consists of nearly 500,000 
words of computer code, and represents 
about 50 man-years of effort. Similar proj- 
ects have been developed at other institu- 
tions (e.g., SCRATCHPAD at IBM, ALTRAN at 
Bell Labs), and use by the scientific com- 
munity is spreading rapidly as word gets 
around concerning the power of these 
systems. 

Perhaps the greatest popular impact of 
computer algebra will come as a result of 
its translation into the language of micro- 

computers. About a year ago the major 
parts of MACSYMA were condensed and 
rewritten (under the name muMath) to fit 
on a 51/4" floppy disc and to run on the 
ubiquitous TRS-80 Radio Shack computer. 
By now muMath is available for virtually 
any personal computer with a Z80 or 
8080A microprocessor. Recently a still 
more stripped down version (called Pico- 
math) has been written in Basic to run on 
just about any computer. These systems 
will soon bring into every research lab and 
every classroom a powerful tool that will 
do for mathematical analysis what the 
hand calculator has done for calculation 
and arithmetic. 

The fact that computer algebra systems 
deal with symbols rather than with num- 
bers gives them an enormous advantage 
over traditional scientific computer calcu- 
lations. Heretofore mathematical calcula- 
tions on a computer were carried out in 
decimal (actually in binary) arithmetic 
with a limited number of digits -usually 
about 16 decimal places for so-called "ex- 
tended precision" work. Sixteen digits may 
appear to afford adequate precision for 
most work, and it usually does. However, 
the errors caused by rounding off the 
seventeenth place do not go away. In any 
calculation requiring millions or billions 
of steps - as many calculations do - the 
accumulated roundoff error can be as 
large as the answer, thus invalidating the 
entire calculation. 

The computer algebra packages avoid 
this problem by working with symbols 
rather than with numbers. They keep track 
of each and every symbol, no more think- 
ing of rounding off numbers than words. 
This means that answers -whether sym- 

bolic or numerical - are exact, not ap- 
proximate. 

If you ask a typical computer program 
in BASIC or FORTRAN to calculate the num- 
ber 30! (which is 30 x 29 x 28 x 27... x 
2 x 1), it will respond with something like 
2.6525286 x1032. But if you ask a computer 
algebra system to calculate this, it will 
yield 

265252859812191058636308480000000. 

For some problems the 8 digits of the first 
answer are quite adequate; but for other 
problems (e.g., factoring) you do need the 
complete accuracy of the exact result. 

What's more important, though, is the 
ability of a computer algebra system to 
save calculation to the last stages in its 
analysis-thus avoiding the accumulation 
of roundoff error as well as the need for 
remembering and manipulating enormous 
numbers. This is in fact the way scientists 
and mathematicians have traditionally 
solved problems: It is the essence of 
algebra - to reason symbolically rather 
than numerically. 

Even if scientists begin a problem with 
specific numbers, they first rephrase 
things by substituting letters for the num- 
bers, and then solve the problem. Once 
they have the solution expressed in letters, 
they can then substitute the correspond- 
ing numbers to calculate the numerical 
answer. This reduces significantly the 
number of arithmetic steps (and the 
chance of human error). More important, 
it makes it possible for the scientist to use 
the answer to explore variations in the 
original problem, to answer the "what if" 
questions that inevitably follow the first 
solution. What if this coefficient were 
twice as big? What if the price of oil goes 
up by 12 percent rather than by 10 percent? 
True problem solving requires the ability 
to explore easily and quickly such natural 
variations on the original problem. 

Traditional scientific software can do 
this, but only at the cost of recalculating 
the entire solution each time. If this solu- 
tion happens to be lengthy and expensive 
in computer time, it reduces or eliminates 
the ability of the investigator to explore 
these options. Computer algebra systems, 
in contrast, do just what human problem 
solvers do: They express their answers in 
symbolic form, then merely substitute 
various numerical values to quickly pro- 
duce answers to innumerable "what if" 
questions. 

It is this ability to mimic so closely pat- 
terns of human problem solving that 
makes observers feel that these programs 
are very near to true "artificial" intelli- 
gence. While human intervention and di- 
rection is still needed - none of these 
programs can determine which equations 
need to be solved, nor can they complete 
their analysis without hints from their 
human masters -the computer algebra 
systems represent a major advance in the 
evolution of computer software toward 
realistic and useful problem solving. O 

These are 
examples of 

Examples of Symbolic Computer Algebra certain 
standard 
functions 
that high- 

Factor x25 + 1: school and 
(X + I) (X4 -x3 + x2 - x + 1) (x20 - X15 + XIO - x5 + I) college stu- 

dents learn 
2x to work by 

Integrate hand: factor- 
x3 + I 2x-l 

~~ata (ing, integra- 

2 log (X2 - X + log (abs(x + 1) )3 tiwn (one of 

6 3 \/3 procedures 
of calculus), 
expansion 

Expand x H (I - x n)24: of a power 
n = I series, and 

taking the 
x - 24X2 + 252x3 - 1472x4 + 4730x5 + ... determinant 

L 2 ~ I~ 
of a matrix. 

x3 x2 x 
I- 

Determinant of )3 >2 I 

W3 w2 W 

-(x -W) (y -W) (y -X) (z -W) (z -X) (z -y) 
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