
WHAT'SINA nE 
Mathematical games offer more 
than fun (and frustration) -they 
can provide insight into 
mathematical theory 

BY LYNN ARTHUR STEEN 

Take three piles of stones, with perhaps 
5 to 10 stones in each pile. Two players 
take turns removing stones, at each turn 
removing one or more stones from any 
single pile. The player who removes the 
last stone is the winner. 

This game, a bit more subtle than tic- 
tac-toe, was created in 1902 by the Harvard 
University Mathematician Charles Bouton. 
He called it "Nim," perhaps after the Ger- 
man nimm, meaning "take." It has had a 
limited yet enthusiastic following among 
mathematicians and engineers because 
there is a perfect strategy for playing the 
game that involves binary numbers. This 
has also made it a popular computer 
game, since the winning strategy can be 
easily programmed. 

Nim is just one example of a growing 
interaction between mathematical the- 
ories and games of strategy. Like games, 
mathematical theories are regulated by 
precise rules, some of which may be al- 
tered or abolished in order to increase 
interest, variety or elegance. Both the 
mathematician and the game player rely 
on extensive hypothetical ("what if ...") 
reasoning to develop sound strategy. So it 
is not surprising that games interact with 
mathematics, each providing insight into 
the process of the other. 

The connection between game strate- 
gies and mathematical theory is best illus- 
trated by the reasonably well-known sys- 
tem of binary numbers. These numbers 
use the digits 0 and 1 to represent powers 
of two (1, 2, 4, 8,...), just as decimal num- 
bers use the digits 0, 1, 2, ... 9 to represent 
powers of ten (1,10, 100, 1,000, . . . ). A pile of, 
say, 5 stones in a Nim game is represented 
in binary notation by the number 101 be- 
cause 101 means 1.22 + 0*21 + 1.20, 
which is just 4 + 1 = 5. If the other two 
piles contain 6 = 4 + 2 (in binary, 110) and 
7 = 4 + 2 + 1 (in binary, 111) stones, then 
the Nim position of 5, 6 and 7 stones is 
represented in binary form by the code 
numbers 101, 110, and 111. These three 
numbers can be summarized by adding 
them in a special way, called Nim-addition: 
Use ordinary addition with the special rule 
that 1 + 1 = 0. Thus 

101 
+ 110 
+ 111 

100 

Hence, the Nim position 5, 6, 7 is summa- 
rized by the binary number 100. 

The connection between binary num- 
bers and Nim strategy is this: Those po- 
sitions that are "safe" for players to leave 
when they complete a move are the ones 
that have a binary Nim total of 0. Leaving 
no stones is the safest of all, because the 
player who does that wins. Leaving some 
other collection of stones whose Nim total 
is 0 is equally safe, for your opponent then 
cannot take enough stones to also leave a 
total of 0. (This is not exactly obvious, but 
can be easily verified by playing a few 
games.) So in your next turn you can take 

away as many stones as the Nim total your 
opponent left, thus restoring the game to a 
safe position (for you) with Nim total of 0. 

For example, faced with piles of size 5, 6, 
and 7, whose Nim total is 100 (in binary) or 
22 = 4 (in decimal), you would take away 4 
stones from any pile. This would leave 
piles either of sizes 1,6,7, or 5,2,7, or 5,6,3 
-and each of these has a Nim sum of 0. No 
matter what your opponent does next, you 
can continue this tactic until you reduce 
the piles to 0 and win. 

Nim addition, first introduced by 
Bouton in his analysis of the game, is a 
useful but strange alternative number sys- 
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tem in which, for instance, 6 + 3 = 5, and 
6 + 5 = 3. (In binary notation 6 is 110 and 3 
is 11; thus 6 + 3 is, under Nim addition, 101, 
which is just 4 + 1, or 5, while 6 + 5 -that 
is, 110 + 101 -is 11, which is 2 + 1 = 3.) 
The basic rationale for this number sys- 
tem has been refined by John Horton 
Conway of Cambridge University to 
provide a remarkable new basis for under- 

standing and axiomatizing the concept of 
"number." Conway's theory, first published 
in a 1976 fun- and pun-filled monograph 
On Numbers and Games (Academic 
Press), offers a unified structure (based on 
moves in games like Nim) for what he calls 
"All Numbers Great and Small." A major 
recent article in the July 1977 AMERICAN 
MATHEMATICAL MONTHLY contains further 
Conway analysis of the relation between 
games and mathematics. 

Conway's numbers include, in one 
structure, not only the ordinary whole 
numbers and fractions, but the general 
classes of irrational numbers, of infinite 
ordinal numbers and of infinitesimals. The 
discoveries that led to creation of these 
latter classes - by Richard Dedekind in 
1872, George Cantor in 1880 and Abraham 
Robinson in 1965 - represent singular 

achievements in our conquest of the world 
of numbers. Now, in a vivid gesture of 
mathematical imagination, Conway has 
shown how basic game ideas lead to essen- 
tial but elusive general classes of numbers. 

The key to the connection between 
games and numbers lies in the recognition 
that some games are really sums of sim- 
pler games. Nim, for instance, can be 
thought of as a sum of three copies of the 
simple (indeed trivial) game of taking 
stones from a single pile. This latter game 
is no contest: The first person takes all the 
stones and wins! But if you set on the table 
three versions of that game and then stipu- 
late that at each turn a person can play in 
just one of the games, you have what Con- 
way calls a compound game. You can do 
this with chess or checkers too: In com- 
pound chess it is possible for one player to 
make consecutive moves on a single 
board while the other player is taking con- 
secutive turns on other boards. It is easy to 
see how radically this compounding can 
change the strategy of the original game. 
Conway saw in the implicit sophistication 
of the compounding process a mechanism 
for creating complicated number classes 
out of simpler ones. 

The game of Kayles is a good example of 
a sophisticated compound game. Here 
stones (or ninepins, formerly called 
kayles) are lined up in a row. On each turn 
a player (with an accurate ball) can take 
out any single stone or any adjacent pair of 
stones. As usual, the player who takes the 
last stone wins. This game begins as a 
single game, but as play proceeds it dis- 
integrates into a compound of several 
smaller games. 

Games like Kayles may be analyzed by a 
sequence of numbers called Sprague- 
Grundy (or sirrmply Grundy) numbers that 
are analogs of the binary sums used to 
evaluate Nim positions. The Grundy num- 
bers for Kayles begin as follows: 
No. of 0 1 2 3 4 5 6 7 8 
Stones 
Grundy 0 1 2 3 1 4 3 2 1 
Numbers 

No. of 9 10 11 12 13 14 15 
Stones 
Grundy 4 2 6 4 1 2 7 
Numbers 
Although the pattern looks unpredictable, 
Richard Guy of the University of Calgary 
has shown that after 72 terms the Grundy 
numbers begin to repeat with a cycle of 12. 
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In 1907, W A. Wythoff invented a varia- 
tion of Nim that leads to still other in- 
teresting number patterns. WVythoff's game 
(sometimes called Tsianshidsi, after a simi- 
lar ancient Chinese game) is played with 
stones in two piles of any size. Each player 
ip turn can take any number of stones from 
a single pile, or else an equal number from 
both piles. (As usual, the player taking the 
last stone wins.) The safe patterns of piles 
in this game turn out to be (1,2), (3,5), (4,7), 
(6,10), (8,13), (9,15).... If, for instance, you 
leave your opponent facing piles of 6 and 
10 stones, then no matter what happens 
you can always respond with a legal move 
that will leave one of the three lower safe 
configurations. 

The interesting thing about the Wythoff 
strategy is that the sequence of safe po- 
sitions includes each positive whole 
number somewhere, but in an unpredicta- 
ble pattern. We can see this more readily 
by making two lists of the numbers in- 
volved in the strategy for Wythoff's game, 
one for the first pile and one for the sec- 
ond: 

1,3,4, 6, 8, 9,... 
2, 5, 7, 10, 13, 15,... 
Mathematicians call sequences like these 
complementary, because each comple- 
ments the other by providing the missing 
integers. 

Investigation of the relation between 
complementary number sequences and 
strategies for games led mathematician 
Aviezri Fraenkel in Israel to create games 
of a new type that he called "annihilation 
games." In these games players move 
pieces (all of the same color) following 
one-way arrows on a game board, with the 
general rule that when a piece moves to an 
occupied location, both pieces involved 
are "annihilated" - removed from the 
board. Unlike games like checkers, annihi- 
lation games permit any player to move 
any piece. The complexity of even simple 
games of this sort is astounding -and is 
the subject of considerable current re- 
search in combinatorial mathematics and 
theoretical computer science. 

Fraenkel's Innocent Marble Game is a 
good example, and a good game. It uses 
two basic game boards that are just slight 
variations of each other (see above). 

The normal game is a compound game 
using three copies of Board A and two 
copies of Board B. Each board contains an 
even number of marbles, no more than 
one in each pit. Players move any single 
marble on each turn, following the direc- 
tion of the arrows. Marbles are removed in 
pairs by annihiliation. The player who 
makes the last move wins. 

Games like the Innocent Marble Game 
differ from Nim-like games in a fundamen- 
tal detail: The marble game has loops that 
permit infinite cycling in which one 
marker chases another endlessly around 
in circles. The presence of these cycles 
led Fraenkel to devise a generalized 
Sprague-Grundy function that copes ad- 
equately with cycles. This new tool has 
permitted detailed analysis of a large class 
of games that, like the marble game, can 
have "dynamic ties" - unending infinite 
repetitions. Examples of such games are 
explained in an article by Fraenkel that 
appeared in the January 1978 MATHIEMA- 
ICS MAGAZINE. 

Research on games has yielded new in- 
sight into the important class of mathe- 
matical and decision problems called NP 
complete. These problems (SN: 5/8/76, p. 
298) are very hard: The time required to 
solve them grows quickly beyond the 
reach of even the fastest modern com- 
puter. Fraenkel and other computer scien- 
tists have shown that some of the annihila- 
tion games are what is called NP hard: 
Determination of the best move in these 
games is at least as hard as any NP com- 
plete problem. 

Compound games, defined by only a few 
very simple rules, can therefore simulate 
the most difficult problems in finite (or 
combinatorial) mathematics. They form 
an ideal proving ground for controlled in- 
vestigation of more elaborate (and more 
"realistic") problems. Moreover, playing 
these games can be fun, with or without a 
thorough analysis of strategy. C: 
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