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SOLUTION OF THE FOUR COLOR PROBLEM 

The four color conjecture, one of 
the most popular and appealing unsolved 
problems of mathematics, was verified 
this summer by an intricate computer- 
based analysis carried out by Kenneth 
Appel and Wolfgang Haken of the Uni- 
versity of Illinois. While it may take 
a year or longer for others to verify 
every detail of their work--the proof 
contains several hundred pages of what 
even the authors term "ridiculous de- 
tail" and subsumes over 1000 hours of 
computer calculation--the general out- 
line of their method and the initial 
confirmation of their major calcula- 
tions is accepted by most graph theo- 
rists as complete and correct. 

The conjecture was first posed in 
1853 by Francis Guthrie, a mathematics 
student at University College, London: 
can every map in the plane be colored 
with four colors so that adjacent re- 
gions receive different colors? The 
first "proof" was published in 1879 
by A.B. Kempe, but it proved to be in- 
correct. Appel's and Haken's new 
proof is simply a very elaborate cor- 
rection of Kempe's oversight. 

Kempe began by showing, correctly, 
that it suffices to verify the con- 
jecture for "normal" maps in which pre- 
cisely three regional boundaries meet 
at each vertex: vertices where more 
than three boundaries meet can be 
separated into several trivalent ver- 
tices, and the resulting map will be 
more difficult to color than was the 
original because more regions are ad- 
jacent. He then used Euler's formula 
V - E + F = 2 relating the vertices, 
boundaries (or edges) and regions (or 
faces) of a map to show that any nor- 
mal map must contain regions with 
fewer than six neighbors. 

This isn't too hard. Let ei de- 
note the number of edges of region i. 
Then the total number E of edges is 

precisely izei. Moreover, in a normal 
map, 2E = 3V, where V denotes the 
total number of vertices. Hence 

E(6-e.) = 6F - 2E = 6F - 6E + 4E 
= 6F - 6E + 6V = 12. 

If each ei were six or greater, the 
left side would be zero or less. Hence 
some region must have fewer than six 
neighbors. 

Armed with this information concern- 
ing "unavoidable" regions, Kempe tried 
to show that whenever a region with 
fewer than six sides appeared in a nor- 
mal map, the map could be reduced to a 
smaller one whose coloring was no easier 
if the reduced map could be four-colored 
then so could the original map. His 
proof was simple and correct for regions 
of 2, 3 or 4 sides, but for pentagonal 
regions his proof was incomplete: in 
1890 P.J. Heawood gave an example of a 
normal map with 25 regions that con- 
tained a pentagon that could not be re- 
duced according to the methods used 
in Kempe's proof. Heawood's map could, 
of course, be colored, but not by 
Kempe's method. 

Heawood's analysis of the Kempe 
proof demonstrated that the problem was 
far more subtle than had at first been 
believed. The problem attracted the at- 
tention of amateur and professional 
mathematicians throughout the world. 
But not even the best minds of the 
twentieth century could solve it. 
Laborious modifications of Kempe's re- 
ducibility arguments revealed only that 
maps of size no larger than 40 or so 
must be four-colorable. These efforts 
climaxed, in a way, with Martin 
Gardner's publication of a hoax counter- 
example in the April 1, 1975 issue of 
Scientific American. 

Coloring problems are at present 
customarily translated into graphs by 
duality: each region is replaced by a 
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point in it (the capital of the 
country, to speak geographically) and 
each boundary by a line joining two 
points. Then a normal map becomes a 
triangulated graph (one whose faces 
are all triangles), and the Euler 
formula for graphs leads to various 
Kempe-type reduction arguments. 

One particularly convenient way to 
work with the Euler formula on triangu- 
lated graphs is to assign a "charge" to 
each vertex v of 6 - n(v)-, where 
n(v) is the number of edges that meet 
at vertex v. Then the Euler formula 
implies, as above, that the sum of 
these charges for any triangulated 
graph is 12. Since positive charge 
occurs only on vertices of degree less 
than 6 (i.e., in regions with fewer 
than six neighbors), we can be sure-- 
from the positive total--that such ver- 
tices are unavoidable in triangulated 
graphs. Kempe tried unsuccessfully to 
show that this set of unavoidable con- 
figurations was also reducible; where 
Kempe failed, Haken and Appel succeeded. 
But to do so they had to replace his 
one flawed case (pentagonal regions) 
with 1,936 complex configurations. 

The strategy behind the Appel-Haken 
proof is to redistribute the Eulerian 
charge on the graph using a specially 
designed "discharging algorithm" in 
such a way as to minimize the number 
of positive vertices--always subject 
to the constraint that the total 

charge must remain unchanged. Then each 
of the configurations identified by the 
remaining positive charges must be re- 
duced, just as Kempe had reduced the 
cases of 2, 3 and 4 sided regions. 

The first step in this program--the 
design of an appropriate discharging 
algorithm--took about three and one-half 
years of counterpoint between man and 
machine. For each vertex with positive 
charge produced by the draft algorithm, 
Haken and Appel tried to find a reducible 
configuration around it (using specially 
designed computer algorithms for assist- 
ance). If no reducible configuration was 
discovered in reasonable time--perhaps 
half an hour of computer search--they as- 
sumed that none existed and went back to 
modify the discharging algorithm to 
avoid such situations. 

When they were finally convinced that 
they had an algorithm that located only 
reducible configurations, Appel and Haken 
began the systematic verification of re- 
ducibility for all cases of positive 
charge produced by the algorithm. The 
resulting catalogue contained 1,936 re- 
ducible configurations, each requiring 
a search of up to 500,000 options to 
verify reducibility. This last phase of 
the work took six months, and was com- 
pleted in June, 1976. 

Final checking--part of which was 
carried out by the researchers' teen-age 
children--took the entire month of July, 

North PoZar Region--A Nonagon 

South Polar Region-A Nonagon 
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and the results were communicated to 
the Bulletin of the American Mathe- 
maticaZ Society on July 26, 1976: 
"Every Planar Map Is Four Colorable." 
This official announcement is sched- 
uled to appear in the September 1976 
issue of the BuZZetin. 

The Haken-Appel proof has sent 
several different shock waves through 
the mathematical world. The verifica- 
tion of a century-old conjecture that 
had baffled the twentieth century's 
best mathematicians is an astounding 
accomplishment. But a solution based 
on computerized case analyses involv- 
ing nearly 2000 cases and 10 billion 
logical options is the complete anti- 
thesis of the idealized "elegant" mathe- 
atical proof. (Perhaps this is why 
Haken's personal presentation of the 
result to an audience of several hun- 
dred mathematicians at the University 
of Toronto in August was greeted with 
no more than mildly polite applause.) 

The Haken-Appel proof is the first 
example of a major mathematical problem 
solved by an essential symbiosis of 
theoretician and computer. Many mathe- 
maticians feel that this result is only 
the prelude to better, shorter, more 
conceptual proofs. "We aren't going to 
go through eternity," vowed one mathe- 
matician, "saying 'And the computer 
said...'." 

In defense of their formidable 
method, Haken and Appel observe that 
theirs is close to an optimal proof 
within the Kempe tradition of seeking 
unavoidable sets of reducible configura- 
tions. Every configuration that must be 
reduced is surrounded by a ring of 
neighbors that determine its reducib- 
ility. The size of this ring has 
great bearing on the difficulty of 
establishing reducibility. 

Several years ago Edward F. Moore of 
the University of Wisconsin developed 
a strategy for disproving the conjec- 
ture (if indeed it were false) by 
creating maps that exclude all known 
reducible configurations almost as 
fast as such configurations were dis- 
covered. The map on p. 220 (flattened 
out from the surface of a sphere: each 
polar region bounded by the top and 
bottom lines is a nonagon) is one 

Moore created in 1963 that contains no 
reducible regions whose ring size is 
smaller than 12. The Haken-Appel proof 
requires configurations of ring size no 
larger than 14. 

The Moore graph, therefore, shows 
that no proof based on an unavoidable 
set of reducible configurations can be 
even moderately short, since it must deal 
with ring sizes at least as large as 12; 
the Haken-Appel proof, while somewhat 
longer than necessary, deals with con- 
figurations only two sizes larger. 

The fact that the Haken-Appel proof 
appeared between ring sizes 12 and 14 
confirms some general probability esti- 
mates concerning the likely occurrence 
of reducible configurations in randomly 
drawn plane maps: it is quite likely 
that maps do exist that contain no re- 
ducible configurations of ring size 
smaller than 13, but it is also very 
likely that every map contains a reduc- 
ible configuration of ring size not ex- 
ceeding 14. These estimates establish 
upper and lower bounds on the length of 
any Kempe-like proof of the four color 
problem. Haken and Appel's proof fits 
right in between these theoretical 
limits. 

Speculators on the market of mathe- 
matical problems might be inclined now 
to support computer attacks on all 
famous unsolved problems. But the 
crucial first step in any computer at- 
tack is a difficult theoretical maneuver 
--the reduction from an infinite to a 
finite number of cases. This is pos- 
sible in the four color problem because 
of the intricate geometry of maps: the 
behavior of graphs of size n very 
strongly influences the behavior of 
graphs of size n + 1. With luck and 
insight, it is possible to develop a 
finite number of cases that cover all 
infinitely many possible maps. 

Such is not likely to be the case 
with problems in number theory such as 
Fermat's conjecture, for the behavior of 
prime numbers appears to be much more 
loosely knit than is the geometry of 
graphs. So the finitization of problems 
in number theory will either be very 
difficult or perhaps impossible. And 
no computer assault can work until the 
finitization theory is complete. 
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But even if a problem is finite, it 
may be impractical to implement on even 
the fastest computers. Had the Haken- 
Appel attack turned out to require con- 
figurations of ring size 15, the time 
required for computer search of reduc- 
ibility would have made the present 
proof totally impossible. 

The Haken-Appel result points, 
therefore, to the existence of a new 
class of mathematical theorems that 
are true, but for which no simple proof 
exists. Exploration of this realm by 
mathematician-computer teamwork is, 
according to Haken and Appel, a major 
challenge for mathematicians in the 
final quarter of this century. "This 
work has changed my view of what mathe- 
matics is," said Haken. "I hope it 
will do the same for others." 

--Lynn Arthur Steen 

LESTER R. FORD AWARDS 

Authors of six expository papers ap- 
pearing in the 1975 issue of the Ameri- 
can MathematicaZ Monthly and Mathematics 
Magazine received Lester R. Ford Awards 
at the August meeting of the Mathemati- 
cal Association of America at the Uni- 
versity of Toronto. Each award is in 
the amount of $100. The award winning 
papers are: 

M.L. Balinski and H.P. Young, The 
Quota Method of Apportionment, 
Amer. Math. Monthly, 82 (1975) 
701-730. 
E.A. Bender and J.R. Goldman, On 
the Applications of Mobius Inver- 
sion in Combinatorial Analysis, 
Amer. Math. MonthZy, 82 (1975) 
789-803. 
Branko Grunbaum, Venn Diagrams and 
Independent Families of Sets, 
Mathematics Magazine, 48 (1975) 
12-23. 
J.E. Humphreys, Representations of 
LS(2,p), Amer. Math. MonthZy, 82 
(1975) 21-39. 
J.B. Keller and D.W. McLaughlin,, 
The Feynman Integral, Amer. Math. 
MonthZy, 82 (1975) 451-465. 
J.J. Price, Topics in Orthogonal 
Functions, Amer. Math. MonthZy, 
82 (1975) 594-609. 

STATISTICS LECTURERS 

The Visiting Lecturer Program in 
Statistics, now its fourteenth year, 
attempts to provide information to stu- 
dents and college faculty about the 
nature and scope of modern statistics, 
and to provide advice about careers, 
graduate study, and college curricula 
in statistics. Leading teachers and 
research workers in statistics--from 
universities, industry and government-- 
have agreed to participate as lecturers. 
Lecture topics include subjects in ex- 
perimental and theoretical statistics, 
as well as in such related areas as prob- 
ability theory, information theory and 
stochastic models in the physical, bio- 
logical and social sciences. 

The Visiting Lecturer Program is spon- 
sored by the American Statistical Associ- 
ation, the Biometric Society and the 
Institute of Mathematical Statistics. 
Partial support is also provided by 
International Business Machines Corpora- 
tion. The program is available to col- 
leges and universities in the United 
States and Canada. Inquiries should be 
addressed to H.T. David, Visiting Lecturer 
Program in Statistics, Department of 
Statistics, Iowa State University, Ames, 
Iowa 50011. 

SCHOOL MATHEMATICS COMPETITIONS 

The New York City Interscholastic 
Mathematics League currently holds five 
contests each semester. Although of- 
ficial entrance into the NYCIML is 
limited to secondary schools in New 
York City, the league welcomes unoffi- 
cial entry by schools from outside New 
York City. The dues are $15 per team 
per semester. 

Any school interested in joining 
the league on an unofficial basis, or 
in using its problems as the basis for 
their own minileague, may do so by 
sending a check for one full year's 
dues. Those who wish to receive one 
copy of each of the contests on a regu- 
lar basis can do so for a $5 league 
fee, payable in advance. 

Further details can be obtained from 
Steven R. Conrad, President, NYCIML, 
39 Arrow Street, Selden, New York 11784. 
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