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the three-year period 1968-70, is the twentieth award of the Chauvenet Prize since
its institution by the MAA in 1925. For the list of the names of previous winners,
see this MONTHLY, 71(1964), p. 589, 72 (1965), pp. 2-3, 74 (1967), p. 3,75 (1968), pp.
3-4, 77(1970), pp. 117-118, and 78 (1971), pp. 112~113.

Professor Tréves was born on April 23, 1930, in Brussels, Belgium. He received
the first and second Baccalaureate degrees in Paris in 1949 and 1950, his licence en
science and his Ph. D. at the Sorbonne in 1953 and 1958. From 1958 to 1961, he
was an assistant professor at the University of California, Berkeley, from 1961 to
1964 an associate professor at Yeshiva University, and from 1964 to 1970 a professor
at Purdue University. Since 1970, he has been a professor at Rutgers University.

Professor Treves was an Alfred P. Sloan Fellow in 1960-62 and 1962-64. From
June to November 1961 he was under the auspices of the Organization of American
States at the Instituto de Matematica Pura e Aplicada in Rio de Janeiro, Brazil; in
September 1965, he was a Visiting Professor at the Tata Institute of Fundamental
Research in Bombay, India, and from 1965 to 1967, and again from May to June,
1970, he was a Visiting Professor at the Sorbonne in Paris.

Professor Tréves’ significant contributions to various branches of analysis,
but, in particular, to partial differential equations and functional analysis, are contain-
ed in his sixty publications.

In accepting the Award, Professor Tréves stressed that he was very much honored
and thankful for having been awarded the 1972 Cauvenet Prize. He added that,
because of the apparent increasing technicality of mathematical research, it is be-
coming ever more difficult to exchange information between mathematicians working
in different fields — or even in the same field. He felt this to be a worrisome situation,
which makes expository talks and articles more necessary than ever.

CONJECTURES AND COUNTEREXAMPLES IN METRIZATION THEORY
L. A. STEEN, St. Olaf College

Prologue. The search for necessary and sufficient conditions for the metrizability
of topological spaces is one of the oldest and most productive problems of point set
topology. Alexandroff and Urysohn [4] provided one solution as early as 1923 by
imposing special conditions on a sequence of open coverings. Nearly ten years later
R. L. Moore chose to begin his classic text on the Foundations of Point Set Theory
[41] with an axiom structure which was a slight variation of the Alexandroff and Ury-

Lynn Steen received his M. I. T. Ph. D. in 1965 under Kenneth Hoffman and has been at St.
Olaf College except for sabbatical leave in 1970-71 at the Inst. Mittag-Leffler, Sweden. His research
is centered on topology, and he is the author with J. A. Seebach, Jr. of Counterexamples in Topology
(HRW, 1970). Editor.

This content downloaded from 130.71.96.21 on Fri, 22 Mar 2013 14:22:09 PM
All use subject to JSTOR Terms and Conditions



http://www.jstor.org/page/info/about/policies/terms.jsp

114 L. A. STEEN [February

sohn metrizability conditions. After Jones [28], we now call any space which satisfies
Axiom 0 and parts 1, 2, 3 of Axiom 1 of [41] a Moore space. Each metric space is a
Moore space, but not conversely, so the search for a metrization theorem became that
of determining precisely which Moore spaces are metrizable. The most famous con-
jecture was that each normal Moore space is metrizable.

It would probably be no exaggeration to say that for the last 30 years, the normal
Moore space conjecture dominated the search for a significant metrization theorem
and in the process played a major role in the development of point set topology. The
conjecture itself was first stated in 1937 by Jones [28] who showed that if 280 < 281,
then every separable normal Moore space is metrizable. The next major result came
nearly twenty years later when Bing [10] and Nagami [44] showed that every paracom-
pact Moore space is metrizable. But Jones’ result together with more recent ones of
Heath [26] and Bing [8] indicated a close relationship between the normal Moore
space conjecture and the continuum hypothesis which was shown by Cohen [18] in
1963 to be independent of the axioms of set theory. Quite recently Tall and Silver
[54] used a Cohen model to show that the normal Moore space conjecture itself
could not be proved from the present axioms of set theory.

Thus as metrization research shifts from topology to logic, we survey in this paper
the chief topological milestones of the last half century. We shall not present
proofs that are available in the literature, but shall concentrate instead on gathering
together the most significant definitions, theorems, conjectures and counterexamples.
The latter will be grouped together at the end of the paper and referenced throughout
the text whenever appropriate. We begin at the beginning.

Basic Definitions. We shall assume throughout this paper that all topological
spaces are Hausdorff. Most often we shall be concerned only with regular spaces,
though this assumption will not go unwritten. Regular spaces are those which admit a
separation of a point from a closed set by disjoint open neighborhoods. A space X is
normal if each pair of disjoint closed sets can be separated by disjoint open neighbor-
hoods, and completely normal if the same can be done for separated sets. A space is
completely normal if and only if it is hereditarily normal [21], that is, if and only if
every subspace is normal.

A subset of a topological space which can be written as the countable union of
closed sets is called an F,-set; the complement of an F,-set can be written as a count-
able intersection of open sets, and is called a G;-set (or an inner limiting set). A space
in which every closed setis G; (or equivalently, every open set is F,;) will be called a
G ;-space; a normal space which is also a Gs-space is called (by Cech [15]) perfectly
normal. Every metric space is perfectly normal and every perfectly normal space is
completely normal [33], so we have the following implications:

Metrizable = perfectly normal = completely normal = normal = regular.
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Examples 5, 2, 10, and 6 show that none of these implications is reversible.

If a topological space has a countable dense subset it is called separable, if it has
a countable basis it is perfectly separable (or second countable), and if it has a count-
able local basis at each point it is first countable. A space in which every subspace is
separable is called hereditarily separable. If every open covering of X has a countable
subcovering, X is called Lindelof (or, by Russian mathematicians, finally compact [3]);
clearly each perfectly separable space is both Lindelof and hereditarily separable.

Since in a metric space the (open) balls of radius 1/» form a countable local basis
at each point, every metric space is first countable. Metric spaces need not be second
countable, but in metric spaces the properties of separable, hereditarily separable,
second countable and Lindelsf coincide. Urysohn [60] proved in 1925 that every
normal second countable space is metrizable, and, in response to a question proposed
by Urysohn, Tychonoff [59] showed a year later that every regular second countable
space is metrizable.

Developments. A collection of sets F = {U,} is said to cover a space X if each point
of X belongs to some U,; if each U, is open, the cover Fis called an open covering
of X. A cover {V;} of a space X is a refinement of a cover {U,} if for each Vj there
is a U, such that U, = V. If S < X, the star of S with respect to a cover F = {U,}
is the union of all sets in F which intersect .S; the star of S is denoted by F*(S), and
the star of the singleton {x} is usually denoted simply by F*(x).

A development for a topological space X is a countable family & of open coverings
F; such that if C is a closed subset of X and p € X — C, there is a covering Fe &
such that no element of F which contains p intersects C (i.e., such that F*(p) n C=g).
A space with a development is called developable. If # = {F} is a development where
F;c F;,, for all 7, the family & is called a nested development, and if F;, is a refine-
ment of F;, & is called a refined development. Clearly each nested development is a
refined development; Vickery [61] showed that every developable space has a nested
development. Axiom 0 and parts 1, 2, and 3 of Axiom 1 of Moore [41] require pre-
cisely that a space be regular with a nested development {F,}; such spaces are called
Moore spaces (after Jones [28]), and are characterized by the fact that for each
pe X, {F(p)} is a countable local basis. Vickery’s theorem can be restated as fol-
lows: a topological space is a Moore space if and only if it is regular and developable.

Each metricspace is a Moore space since the sequence of open coverings by metric
balls of radius 1/n is a development; examples 6, 9, 14, and 15 show that Moore
spa‘ces need not be metrizable.

Semimetric Spaces. A semimetric for a Hausdorff space X is a symmetric function
d:X x X— R*suchthatd(x,y) = Oifand onlyif x = y, and if xe X and E < X,
inf {d(x,y) | ye E} =0 if and only if xeF, the closure of E; a Hausdorff space
which admits a semimetric is called a semimetric space. If we did not require d to be
symmetric, to assert the existence of a function with the remaining properties would
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be equivalent to saying that the space X was first countable [13]. Thus a semimetric
space may be thought of as a symmetric first countable space. In fact, some Russian
mathematicians call these spaces symmetrizable.

Now every developable space has a natural semimetric: if {F,}is a nested devel-
opment for X (with XeF;), we define d(x,y) =inf {I/n|x,ye Ue F,}. Then
d is a semimetric, but clearly not a metric since d is not continuous. (A semimetric
space is metrizable if and only if it has a continuous semimetric [13].) Semimetric
spaces share with metric spaces the property that every closed set is a G4 [35], hence
such spaces are Gs-spaces. We use Figure ! to summarize the implications for regular
spaces; counterexamples to the converse implications are listed below each impli-
cation arrow.

Moore G; and
metric == =5 semimetric = first
) o)) countable

©

developable

Fic. 1

Every known example of a Moore space which is not metrizable is also not normal;
the normal Moore space conjecture asserts that it will always be thus. Jones [28] in
1937 mounted the first major attack on this conjecture, and succeed only in proving
several weaker theorems: every normal Moore space is completely normal, and every
separable normal Moore space is metrizable provided 2% > 2% — a fact implied
by (but not equivalent to) the continuum hypothesis. Both of Jones’ results have
recently been strengthened: McAuley [36] observed in 1954 that a simple modi-
fication of Jones’ proof will show that every normal semimetric space is completely
normal, while in 1964 Heath [25] showed that a necessary and sufficient condition for
the metrizability of a separable Moore space is that every uncountable subset M of
the real line contains a subset which is not F, (in M). This condition is (perhaps
not strictly [25]) weaker than that used by Jones, namely 2% < 281,

Jones actually showed that if 280 < 28t then every separable normal space has
the property that every uncountable subset has a limit point; Heath [26] called
spaces with this property y;-compact and proved the converse to Jones’ theorem:
if every separable normal space is ¥;-compact, then 280 < 28,

Paracompactness. The most significant general approximation to the normal
Moore space conjecture is the Bing-Nagami theorem that every paracompact Moore
space is metrizable. To develop the concept of paracompactness and all its variations,
we must first discuss the naming of various covers.
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A cover is point finite if each point belongs to only finitely many sets in F, locally
finite if each point has some neighborhood which intersects only finitely many mem-
bers of F, and star finite if each set in F intersects only a finite number of other sets in
F. A cover V = {V;} of X is a star refinement (or a point star refinement, or a A re-
finement) of a cover {U,} if for each x€ X there is some U, such that V*(x) = U,
(where V*(x) is the star of x with respect to ¥ = {Vp}).

A Hausdorff space is called fully normal if every open cover has an open star re-
finement, strongly paracompact (or star paracompact) if every open cover has an open
star finite refinement, paracompact if every open cover has an open locally finite re-
finement, and metacompact (or pointwise paracompact, or weakly paracompact) if every
open cover has an open point finite refinement.

Fully normal spaces were first defined by Tukey [58] in 1940, while paracompact
spaces were introduced by Dieudonné [19] in 1944. Tukey showed that every metri-
zable space is fully normal, while Dieudonné showed that every paracompact space
is normal. The key link between these definitions was provided by Stone [53] in 1948
who showed that every metric space is paracompact by proving that every fully nor-
mal space is paracompact, and conversely. Although a regular semimetric space
need not be paracompact (Example 6), Ceder [16] showed that each regular hereditarily
separable semimetric space is paracompact. Smirnov [48] showed that a paracom-
pact space which fails to be metrizable must fail for local reasons: every locally met-
rizable paracompact space is metrizable.

Also in 1948 Morita [43] introduced the concept (but not the name) of strongly
paracompact spaces; he showed that each regular Lindelof space is strongly para-
compact while every strongly paracompact space is a fortiori paracompact. Kaplan
[32] and Alexandroff [1] showed that each separable metric space is strongly paracom-
pact, and that a nonseparable metric space need not be strongly paracompact (Exam-
ple 11). We summarize in Figure 2 these results together with the counterexamples
to the converse implications.
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A most important variation of paracompact spaces is that of countably para-
compact spaces, those for which every countable open covering has a locally finite
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open refinement. Morita [43] showed in 1948 that every metacompact normal space
is countably paracompact, (see also Michael [40]) while in 1951 Dowker [20] proved
that every perfectly normal space is countably paracompact. Dowker conjectured
that every normal space is countably paracompact, and showed this conjecture
equivalent to the conjecture that the product of a normal space with the closed unit
interval I is normal by showing that X is countably paracompact and normal if and
only if X x I is normal. Countably paracompact normal spaces are sometimes
called binormal; they have been characterized in many ways by Mansfield [34] and
Dowker [20]. Clearly every fully normal (i.e., paracompact) space is binormal, and
every binormal space is normal.

Screenable Spaces. A collection # of sets is called conservative (or closure pre-
serving) if for every subcollection &/ < 4, the union of the closure of the members of
o is closed. A conservative collection is discrete if the closures are pairwise disjoint.
Equivalently a collection # of subsets of X is discrete if every point in X has a
neighborhood which intersects at most one of the sets in 4.

Now a topological space is called (by Bing [10]) screenable if for each open cover-
ing Fthere is a sequence F, of collections of pairwise disjoint open sets such that U F,
is a refinement of F. The space is called strongly screenable if the F, may be chosen
to be discrete. A perfectly screenable space is one with a o-discrete base — that is, a
base which is the countable union of discrete families. A formally weaker condition
is that of a c-locally finite base — one which is the countable union of locally finite
families. It follows directly from the definitions that every perfectly screenable space
is strongly screenable, and a fortiori, screenable.

Stone [53] showed in 1948 that every metric space has a o-discrete (and thus o-
locally finite) base. Shortly thereafter, Nagata [45] and Smirnov [50] showed that every
regular space with a o-locally finite base is metrizable, while Bing [10] showed that each
perfectly screenable regular space is metrizable. A few years after Bing’s work
appeared, Nagami [44] showed that in regular spaces paracompactness is equivalent
to strong screenability and that in binormal (i.e., countably paracompact and normal)
spaces, screenable implies strongly screenable. Every strongly screenable developable
space must be perfectly screenable since the discrete refinements of the development
will form a o-discrete base [10]. Thus every paracompact Moore space is metrizable,
for by Nagami’s theorem such spaces are strongly screenable and developable. Heath
[25] showed that every screenable Gs-space (thus every screenable developable space)
is metacompact.

We summarize in Figure 3 the major implications for regular spaces (which are
really the only ones of interest vis-d-vis metrizability). The relevant counterexamples
are classified by the Venn diagram in Figure 4.

Collectionwise Normal Spaces. A (Hausdorff) topological space is called collection-
wise normal if every discrete collection of sets (or, equivalently, closed sets) can be
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covered by a pairwise disjoint collection of open sets, each of which covers just one
of the original sets. If we weaken this property by requiring it of only countable
discrete collections, we call the space countably collectionwise normal. On the other
hand, we may strengthen collectionwise normal by requiring every almost discrete
collection of sets (that is, a collection which is discrete with respect to its union)
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to have a covering by pairwise disjoint open sets: such spaces are called completely
collectionwise normal. A space is completely collectionwise normal if and only if
it is hereditarily collectionwise normal [35], so each completely collectionwise normal
space must be completely normal (i.e., hereditarily normal). Every metric space is
completely collectionwise normal, so we summarize the implications in Figure 5.
Examples 10 and 12 show that normal spaces need not be collectionwise normal,
and that collectionwise normal spaces need not be completely collectionwise
normal.
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Bing [10] showed that every fully normal (i.e., paracompact) space is collection-
wise normal ; Nagami [44] showed that every metacompact collectionwise normalspace
is strongly screenable. Nagami and Michael [38] showed that the converse holds for
regular spaces. So for regular spaces, the concepts of fully normal, paracompact
and strongly screenable coincide. Since each strongly screenable developable space
is perfectly screenable and each regular perfectly screenable space is metrizable, we
conclude again that every paracompact Moore space is metrizable. In fact, Bing [10]
gave two slightly stronger results: every screenable, normal Moore space is metrizable
(since every screenable normal developable space is strongly screenable) and every
collectionwise normal Moore space is metrizable (since every such space is screenable).
Thus to prove every normal Moore space metrizable, it would suffice to prove it
collectionwise normal. In 1964 Bing [8] showed that every normal Moore space is
countably collectionwise normal.

Several conditional converses of the basic implications have been established.
Michael [40] showed that every collectionwise normal metacompact space is para-
compact, while McAuley [35] showed that every collectionwise normal semimetric
space is paracompact, and that every paracompact semimetric space is completely
collectionwise normal.

In 1960 Alexandroff [2] developed a slightly different type of metrization
theorem by defining the concept of a uniform base: a basis for X is a uniform base
if for each x € X and each neighborhood U of x, only a finite number of the basis sets
which contain x intersect X— U. Equivalently, a base 4 for X is uniform if for each
x€ X any infinite subset of {Ue # | x € U} is a (local) basis at x. Since for each in-
teger n the open covering of a metric space by balls of radius 1/x has a locally finite
subcovering, each metric space has a uniform base, and each space with a uniform base
is metacompact. Alexandroff showed that a collectionwise normal space with a uni-
form base is metrizable, and similarly that a paracompact space with a uniform base
is metrizable. Heath [25] proved that a regular space has a uniform base if and only if
it is metacompact and developable, from which both of Alexandroff’s theorems fol-
low.

Arhangel’skii [5] strengthened the definition of a uniform base by substituting
for the point x an arbitrary compact set K: he called & a strongly uniform base if for
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any compact subset K « X and any neighborhood U of K, only a finite number of
the basis sets intersect both K and X — U. Arhangel’skii showed [7] that a space is
metrizable if and only if it has a strongly uniform base. Finally, a space is said to
have a point countable base if it has a basis # such that no point is contained in
more than countably many sets of #. Each uniform base is point countable, and
Heath [24] has shown that every semimetric space with a point countable base is
developable. We summarize the preceding implications in Figure 6; the reader is
invited to draw the corresponding Venn diagram.
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Conjectures. The literature on the normal Moore space conjecture abounds in con-
ditional theorems which assert that if some hypothesis is true, then some particular
theorem is true. A famous example cited previously is Jones’ theorem that if 280 « 28t
then every separable normal Moore space is metrizable. These theorems deal with
implications among statements whose truth or falsehood is either not yet known, or
which are in some cases (e.g., the continuum hypothesis) independent of the axioms
of set theory.

We shall denote by CH the continuum hypothesis 28 = X, ; G6del [22] and Cohen
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[18] proved this hypothesis consistent with and independent of the Zermelo-Fraenkel
(or Godel-Bernays) axioms of set theory (hereafter referred to simply as ““set theory”).
We shall denote by WCH Jones’ hypothesis that 280 < 28:_ since it is a weak version
of CH: if 280 = X, then 2%° = X, < 281 by Cantor’s theorem. Clearly the consistency
of CH implies the consistency of WCH. The negation of WCH, namely 2¥e = 2¥:
is called the Luzin Hypothesis (LH); Bukovsky [14] showed that LH is consistent
with set theory. Thus WCH, the negation of LH, is independent of set theory.

Since every separable metric space has 280 Borel subsets WCH implies that every
separable uncountable metric space has a subset which is not a Borel set; we shall
call this BH, for Borel hypothesis. Heath [25] used a special case of BH to strengthen
Jones’ theorem: we shall denote by HH the statement that every uncountable sub-
space M of the real line contains a subset which is not F, in M. Since every F,-set is
a Borel set, BH implies HH; Heath showed that HH is equivalent to Jones’ con-
jecture JC that every separable normal Moore space is metrizable. The consistency
of the continuum hypothesis implies that of JC, while the independence of JC was
proved by Tall and Silver [54] in 1970.

Heath also showed that Jones’ conjecture follows from the hypothesis MMSC
that every normal metacompact Moore space is metrizable; clearly MMSC is weaker
than the normal Moore space conjecture MSC. MM SC is equivalent to Alexandroff’s
conjecture AC that every normal space with a uniform base is metrizable [3]. Traylor
[57] suggested the conjecture (TC) that every normal Moore space is metacompact.
Since McAuley [35] showed that a separable normal metacompact Moore space is
metrizable, Traylor’s conjecture implies Jones’ conjecture.

Several common conjectures center on semimetric spaces, a generalization of
Moore spaces. Brown [13] suggested that every normal semimetric space is collection-
wise normal, while Heath [23] appeared to strengthen this conjecture by suggesting
that every normal semimetric space is paracompact. Actually since every semimetric
collectionwise normal space is paracompact [35], these conjectures are equivalent;
we shall denote them by NSP. McAuley [37] proposed the weaker conjecture SN.SP
that every separable normal semimetric space is paracompact. The Bing-Nagami re-
sult that every paracompact Moore space is metrizable shows that NSP implies the
Moore space conjecture MSC, and similarly, SNSP implies Jones’ separable Moore
space conjecture JC.

In [10] Bing showed that MSC is equivalent to the conjecture that every normal
Moore space is collectionwise normal; in [8], he considered the weaker conjecture
BC that every normal Moore space is collectionwise normal with respect to a dis-
crete collection of points. (He termed a counterexample to BC one of type D.) Bing
showed that BC is equivalent to the following set theoretic conjecture: If X is a set
and if Y denotes the product X x X less the diagonal A = {(x,x)e X x X), we call a
subset W < Y a skew subset if the projections n,(W) and = (W) are disjoint. Bing’s
alternative to BC is the conjecture F that if f:Y —Z+ is a function from Y to the non-
negative integers with the property that for each skew subset W < Y there is a function
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Fy:W—Z* which dominates f in the sense that max [Fy(x), Fy(»)] > f(x,y) for all
(x,y) € W, then there is a function F:X — Z+ which dominates f in this sense for all
(x,y)e Y.

Bing also showed that BC implies JC by showing that any nonmetrizable separable
normal Moore space would necessarily be a counterexample of type D. We summarize
the relationships among these conjectures in Figure 7. Since all of the conjectures in
this figure imply JC, none of them can be proved from the axioms of set theory. But
the consistency of these various hypotheses (except of course for CH and its con-
sequences) remains an open question.
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We have already mentioned Dowker’s conjecture DC that every normal space is
countable paracompact; he showed this equivalent to the conjecture NP that the
product of every normal space with the unitinterval is normal [18]. Nagami [44] showed
that a screenable normal countably paracompact space is paracompact and conjec-
tured NC that every screenable normal space is paracompact. Clearly DC implies NC.
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Tamano [55] discusses a wide variety of theorems concerning the product invariance
of normality and paracompactness and enunciates the following conjecture TPC: If
Y is metrizable and X x Y is normal then X x Y is paracompact. Tamano and Morita
[42] have shown that to conclude that X x Y is paracompact it is sufficient to prove
X x Y countably paracompact . Thus Dowker’s conjecture implies Tamano’s.

Souslin [50] asked whether a linearly ordered space must be separable whenever
it satisfies the countable chain condition (that every disjoint collection of open sets
is at most countable). We shall call this conjecture SC; a counterexample (if it exists)
is known as a Souslin space. A thorough discussion of this conjecture and related
topics is provided by M. E. Rudin [47] who earlier showed [46] that if a Souslin space
exists, then so must a counterexample to Dowker’s conjecture. In other words,
Dowker’s conjecture implies Souslin’s conjecture. Tennenbaum, Solovay, and Jech
showed that Souslin’s conjecture is consistent with [49] and independent of ([27, 56])
the axioms of set theory. Thus Dowker’s conjecture cannot be proved from the pre-
sent axioms of set theory. (Added in proof: In fact, it is false. Just recently M. E. Rudin
constructed a counterexample to Dowker’s conjecture.)

Epilogue. The concepts and examples discussed in this paper represent not so
much the frontier as the established settlements of metrization research. Several
recent papers by Ceder [16], Borges [11], [12], Michael [39], and Worrell and Wicke
[62] contain such refinements as M ;-spaces, stratifiable spaces, N,-spaces, and 6
bases. In each of these new areas there are significant and difficult conjectures similar
to those enumerated above; the interested reader can pursue these issues in the papers
cited in the bibliography, together with those listed in the excellent bibliographies
of [3] and [6].

Since a metric is a map to the positive reals, it should not be surprising to find that
the existence of certain esoteric metrics is intimately related to the existence of certain
subsets of the real line. Example 7 provides a very specific instance of this relationship
in that potential counterexamples to both Jones’ and Dowker’s conjectures depend
on the existence of certain special subsets of the real line, while the independence
theorems of Tall, Silver, Tennenbaum, Solovay, and Jech show that many topological
problems depend on fundamentally undecidable problems of set theory. Thus many of
the unresolved metrization conjectures may come to be viewed as one measure of the
incompleteness of our present axiomatic view of metric spaces.

Examples

1. Open Ordinal Space. Let X be the set of all ordinal numbers strictly less than
the first uncountable ordinal Q; X carries the interval (or order) topology. Then X is
completely collectionwise normal [51] but not fully normal [10].

2. Closed Ordinal Space. Let X be the set of all ordinal numbers less than or equal
to the first uncountable ordinal Q. X is compact in the interval topology, but not G
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since the closed set {Q} is not a G, set. Thus X is neither perfectly normal nor semi-
metrizable. But of course it is strongly paracompact.

3. Lower Limit Topology. Let X be the real line with the topology generated by
the sets of the form [¢,0) = {xe X | a £ x < b}. Bing [10] cites this space as an ex-
ample of a regular, separable, strongly screenable (and therefore paracompact) space
which is neither perfectly screenable nor developable.

4. Stratified Plane. If R is the real line with the Euclidean topology and S is the
real line with the discrete topology, then X = R x S is a nonseparable strongly
paracompact metric space.

5. Bow-Tie Space. Let X be the Euclidean plane with real axis L. Ifd: X x X — R+
is the Euclidean metric on X, we define a semimetric ¢ as follows: d(p,q) = d(p,q)
if pge X — L; 8(p,q) =d(p,q) + a(p,q) if p or ge L, where a (p,q) is the radian
measure of the acute angle between L and the line connecting p to g. The topology
on X is generated by the semimetric balls of small radius; a neighborhood ball of a
point p € L looks like a bow-tie (Figure 9) or a butterfly, so this space is often called

-~
Ly
A4 -
7
Ve
/4\ ( ) 7N TN
s ap,q / N N o
o L ; ¥ —
D \\‘//’, \\\_’//
Fic. 9

the bow-tie or butterfly space. McAuley [36] introduced this space as an example of a
regular semimetric space which is not developable. He showed furthermore that it is
paracompact (thus completely collectionwise normal) and hereditarily separable.

6. Tangent Disc Topology. Let P = {(x, ) I X,y € R, y >0} be the open upper
half-plane with the Euclidean topology 7 and let L denote the real axis. We generate
a topology on X = P uU L by adding to 7 all sets of the form {x} U D, where
x e L and D is an open disc in P which is tangent to L at the point x (Figure 10).
This important example was apparently introduced by both Niemytzki (see [6])
and Moore (see [29]) as a regular developable space which is not metrizable (since
the uncountable closed subset L is discrete and thus not separable in the induced
topology). The development which makes X a Moore space is the collection of
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open balls of radius 1/n (including the tangent discs {x} U D if D has radius 1/n).
X is clearly not normal, and neither countably paracompact nor metacompact [52].

A common variation (see [30]) of the tangent disc topology is formed by re-
placing the tangent disc neighborhoods by sets of the form {x} U T for each x € L,
where T is an inverted isosceles triangle in P with vertex at the point x and base
parallel to L, such that the radian measure of the vertex angle equals the length

<c————- 7
N\ //
T \
/ \N 7/
\V v L
Fic. 11

of its adjacent sides (Figure 11). McAuley [36] discusses a different variation which
is formed from the bow-tie space by rotating each of the bow-tie neighborhoods 90°
(Figure 12). Bing [9] introduced a physical model which he called flow space by
assuming that water is flowing from left to right across the unit square at the rate
of (1—x) feet per second. Flow space is the closed unit square, and a neighborhood
N,(t) of a point p is the set of all points in X which a swimmer could reach in less
than ¢ seconds (Figure 13).

~

—~—

Fic. 12

7. Tangent Disc Subspaces. If S'is a subset of the real line L, and Y =P U L
is the tangent disc space, we let X be the subspace P U S with the topology induced
from Y. The space X is second countable if and only if S is countable, so, since X
is regular, X is metrizable if and only if S is countable. X will always be a Moore
space since it has the same development as ¥, and similarly it will always be separable
since the rational lattice points in P are dense in X. Jones [28] showed that every
subset of cardinality ¢ of a separable normal space has a limit point; since .S cannot
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have any limit points, X cannot be normal when $ has cardinality c. Bing [10] showed
that X is normal if every subset of S is a G;-set in (the relative topology of) S; but
every uncountable G;-subset of the Euclidean real line has cardinality ¢ (by Mazur-
kiewicz’ theorem [33, p. 441]). Thus X would be a normal nonmetrizable Moore
space if S were uncountable but of cardinality less than ¢ with the additional prop-
erty that every subset of S is G; in S. Such an § could contain only countable
Gs-subsets of the real line. Clearly the existence of a set with these properties cannot
be proved within ordinary set theory since it would constitute a counterexample
to the continuum hypothesis. However, Jones [39] constructed a set S of cardinality
N; such that every countable subset of Sis G; in S.

Younglove [63] studied this example as a possible counterexample to Dowker’s
conjecture that every countably paracompact space is normal and proved that if
S'is a G-set, then X is countably paracompact if and only if S is countable. Thus
X could be a counterexample to Dowker’s conjecture only if S was not a G;s-subset
of the real line L.

"\ .

Fic. 14

8. Tangent V Topology. If X is the upper half plane including the real axis L,
we let each point of X’ — L be open and take as a neighborhood basis of points xe L
a “V”’ with vertex at x, sides of slopes +1 and height 1/n (Figure 14). Heath [25]
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showed that X is a metacompact Moore space which is not screenable. Clearly X is
neither normal nor separable.

9. Picket Fence Topology. If X is the upper half plane including the real axis L,
we let each point.of X — L be open, and take as a neighborhood basis of rational
points x € L the vertical line segments of height 1/n with lower end point at x. The
neighborhood basis of irrational points x e L consists of line segments of slope 1
and height 1/n with their base at the point x (Figure 15). Heath [25] introduced this
as a simple example of a screenable Moore space which is not normal.

S

rat.  irr.

FiG. 15

10. I’. Let X = I' be the uncountable Cartesian product of the closed unit
interval I = [0,1] with the Tychonoff topology; that is, X is the set of all functions
from I to I with the topology of pointwise convergence. Since X is compact and
Hausdorff, it is normal; but it is not completely normal [52] since it contains a
subspace homeomorphic to Z’, the uncountable product of the positive integers,
which Stone [53] showed was not normal. Thus Xis strongly paracompact and col-
lectionwise normal but neither perfectly normal nor developable.

11. Hedgehog. If K is a cardinal number, a hedgehog X of spininess K is formed
from the union of K disjoint copies of the unit interval [0,1] by identifying the zero
points of each interval. A metric for X can be defined by d (x, y) = |x — y|if xand y
belong to the same segment (or spine), and d(x,y) = x + y otherwise. Alexandroff
[3] cites a hedgehog of uncountable spininess as an example of a metric space which
is not strongly paracompact.

12. Bing’s Power Space. If S is some uncountable set with power set P, let X
= [ [1¢p{0,1}1, where {0,1} 1 is a copy of the two point discrete space. (If we let 2 denote
the two point discrete space, we have X = 22S.) Since the elements of X are collections
of subsets of S, each ultrafilter on S is a point in X; let M denote the subset of X
consisting of all principal ultrafilters of .S. Then if x; is the point in X whose A-th coor-
dinate (x;)a equals 1if and only if se A, we have M = {x,€ Xl s€ S}.If X has the
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Tychonoff topology t, X — M is dense in X. Bing [10] generated a new topology on
X by adding to t all points of X — M as open sets; we shall denote the topology thus
generated by o. M inherits from (X,0) the discrete topology; furthermore, any two
disjoint closed subsets of M are contained in disjoint open subsets of X [52]. It follows
that X is normal but not perfectly normal [10], metacompact [52] or collectionwise
normal (since M is an uncountable discrete collection of points without disjoint open
neighborhoods for all of its points).

13. Michael’s Power Subspace. If X = 22% is Bing’s Power Space, we let Y be the
subspace M U L, where M is the subset of all principal ultrafilters of S and L is the
collection of all finite families in X — M. Michael [40] selected this subspace as an
example of a normal metacompact space which is not collectionwise normal.

14. Cantor Tree. Let C denote the Cantor set in the unit interval [0,1]; the mid-
points of the components of [0,1] - C are 1/2, 1/6, 5/6, 1/18, 5/18, etc. Let D be
the tree (or dendron) in the lower half plane whose vertices are (1/2,-1), (1/6,-1/2),
(5/6,-1/2), (1/18,-1/4), (5/18,~1/4), etc.

Then the space X is defined as D U C (Figure 16), where D inherits the Euclidean
topology from the plane, while a basis neighborhood of a point ce C is a path I”
in the tree D whose upper limit is the point ¢, together with open segments
at each branch point of I' sufficiently short to avoid including any other branch
point. Jones [31] cites this example of Moore as the first example of a nonmetrizable
Moore space. The fact that X is nonmetrizable follows from the observation that
it is separable but not perfectly separable. Jones [31] shows that X is not normal.
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15. Moore’s Road Space. Let two roads start at the origin of the plane and pro-
ceed in opposite directions for one mile each. Let each then branch into two roads
which continue for one mile each before each of these now branches into two roads.
Continue this in such a way that none of the new roads ever intersect, and so that all
roads proceed indefinitely far from the origin. This process generates ¢ roads; at the
“end’’ of each we adjoin a straight ray of infinite length. This collection of roads is
the space X (Figure 17), and we generate a topology from a basis of open discs. This
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“automobile road”’ space was introduced by Moore as a graphic variation of the

t has the same properties [31].
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Cantor tree (Example 14)

aseq “wunod “id
aseq WO ;
aseq urg "0}
9[qeUa210G *J19d ﬂ
3[qruIdS ‘NS |
a1qeusasog |
[ewroulq |
sidwoered Juno)
1edwooseiay
1oedwoodereq
1oedwiooeseyd "11S
[ewioN A(rd
D
sudwweg |

SI100N

J[qedo(aaaq

jalepury

‘Jedag 'paroH

Juno) 18|
‘Junoy) pug
dqesedasg
JJqEZINAN
“ION [0 dwo) !
10N '[0D "IUno) |
[BWION [[0D !
[RWLION “JI9d |
feurroN "dwo)
[PWLION
Igngay
JIopsneHq

0000010000O0T

Property

11000

I
1

11111

1

Example

1 = example has property
have property

0 = example does not

1 Open Ord. Space
2 Closed Ord. Sp.
3 Lower Limit

100000
100000O

Lt

1000011

1100000

110

1

1000

{

1

[V ] 1000 11
1100 001
110101

1
1
{

1
1
{
1
1

1

1

{

1
1

11111

1
1
1
1
1

4 Stratified Plane
5 Bow-Tie

L0O0O

00000000000

1

1

100
00

1

{

111

l
1
1

[

I
1
1

0

100000O00O0

6 Tangent Disc
8 Tangent V

1
l

10001 00 00011
!
10000O01

001
001
00

100000O0OO0O0O
10000O0O0O0O0DO

11001

000T1

1
1

0

1

0001

9 Picket Fence

10 7!

1000

[

1

100100

1

{

11111001

1111

11 Hedgehog

0000

10000

000000O00O00O0

12 Power Space

1

000000

13 Power Subspace

14 Cantor Tree

0000
0000

1000

1
1

1

0

100000001

1
1

1000

1

001

100000000O0O0T

15 Moore’s Road Space

FiG. 18

This content downloaded from 130.71.96.21 on Fri, 22 Mar 2013 14:22:09 PM

All use subject to JSTOR Terms and Conditions



http://www.jstor.org/page/info/about/policies/terms.jsp

1972] CONJECTURES AND COUNTEREXAMPLES IN METRIZATION THEORY 131

References

1. P. Alexandroff, General duality theorems for non-closed sets of n-dimensional space,
Mat. Sbornik, 21 (63) (1947) 161-231.
2. , On the metrization of topological spaces, Bull. Acad. Polon. Sci., 8 (1960) 135-140.
3. , Some results in the theory of topological spaces, obtained within the last twenty-
five years, Russian Math. Surveys, 15 (1960) 23-83.
4, P. Alexandroff and P. Urysohn, Une condition nécessaire et suffisante pour qu’une classe
(L) soit une classe (B), Comptes Rendus, 177 (1923) 1274-1276.
5. A. Arhangel’skii, Bicompact sets and the topology of spaces, Soviet Math. Dokl., 4 (1963),
561-564.
6. ———, Mappings and spaces, Russian Math. Surveys, 21 (1966) 115-162.
7. , On the metrization of topological spaces, Bull. Acad. Polon. Sci., 8(1960) 589-595.
8. R. H. Bing, A translation of the normal Moore space conjecture, Proc. Amer. Math. Soc.,
16 (1965) 612-619.
9. ———, Challenging conjectures, this MoNTHLY, 50th Anniv. Issue, 74 (1967) 56-64.
10. , Metrization of topological spaces, Canad. J. Math., 3 (1951) 175-186.
11. C. R. Borges, On the metrizability of topological spaces, Canad. J. Math., 20 (1968)
795-804.
12. , Stratifiable spaces, Pacific J. Math., 17 (1966) 1-16.
13. M. Brown, Semi-metric spaces, Summer Institute on Set Theoretic Topology, Madison,
AM.S., (1955) 64-66.
14, L. Bukovsky, Borel subsets of metric separable spaces, General Topology and its Relations
to Modern Analysis and Algebra, 1966 Prague Symp., Academic Press, 1967, 83-86.
15. E. Cech, Sur la dimension des espaces parfaitement normaux, Bull. Intern. de ’'Acad. de
Bohéme (Prague), 33 (1932) 38-55.
16. J. G. Ceder, Some generalizations of metric spaces, Pacific J. Math., 11 (1961) 105-125.
17. E. W. Chittenden, On the metrization problem and related problems in the theory of
abstract sets, Bull. Amer. Math. Soc., 33 (1927) 13-34. '
18. P. J. Cohen, The independence of the continuum hypothesis, I, II, Proc. Nat. Acad. Sci.
U.S.A., 50 (1963) 1143-1148; 51 (1964) 105-110.
19. J. Dieudonné, Une généralisation des espaces compacts, J. Math. Pures Appl., 23 (1944)
65-76.
20. C. H. Dowker, On countably paracompact spaces, Canad. J. Math., 3 (1951) 219-224.
21. S. Gaal, Point Set Topology, Academic Press, New York, 1964.
22. K. Gédel, The Consistency of the Continuum Hypothesis, Princeton, 1940.
23. R. W. Heath, On certain first countable spaces, Topology Seminar, Wisconsin (1965);
Princeton (1966) 103-113.
24, , On spaces with point-countable bases, Bull. Acad. Polon. Sci., 13 (1965) 393-395.
25, , Screenability, pointwise paracompactness, and metrization of Moore spaces,
Canad. J. Math., 16(1964) 763-770.
26. , Separability and x; compactness, Colloq. Math., 12 (1964) 11-14.
27. T.Jech, Non-provability of Souslin’s Hypothesis, Comm. Math. Univer. Carolinae, 8 (1967)

291-305.
28. F. B. Jones, Concerning normal and completely normal spaces, Bull. Amer. Math. Soc.,
43 (1937) 671-677.

29. , Metrization, this MoNTHLY, 73 (1966) 571-576.
30. , Moore spaces and uniform spaces, Proc. Amer. Math. Soc., 9 (1958) 483-486.
31. , Remarks on the normal Moore space metrization problem, Topology Seminar,

Wisconsin (1965); Princeton (1966) 115-119.

This content downloaded from 130.71.96.21 on Fri, 22 Mar 2013 14:22:09 PM
All use subject to JSTOR Terms and Conditions



http://www.jstor.org/page/info/about/policies/terms.jsp

132 L. A. STEEN

32. S. Kaplan, Homology properties of arbitrary subsets of Euclidean spaces, Trans. Amer.
Math. Soc., 62 (1947) 248-271.

33. C. Kuratowski, Topologie I, Monografie Matematyczne, Vol. 20, Warsaw, 1958.

34, M.J. Mansfield, Oncountably paracompact normal spaces, Canad. J. Math.,9(1957) 443-449.

35. L. F. McAuley, A note on complete collectionwise normality and paracompactness,
Proc. Amer. Math. Soc., 9 (1958) 796-799.

36. , A relation between perfect separability, completeness, and normality in semi-
metric spaces, Pacific J. Math., 6 (1956) 315-326.

37. , Paracompactness and an example due to F. B. Jones, Proc. Amer. Math. Soc.,
7 (1956) 1155-1156.

38. E. A. Michael, A note on paracompact spaces, Proc. Amer. Math. Soc., 4 (1953) 831-838.

39. , ®o spaces, J. Math. Mech., 15 (1966) 983-1002.

40. , Point finite and locally finite coverings, Canad. J. Math., 7 (1955) 275-279.

41. R. L. Moore, Foundations of point set theory, Amer. Math. Soc. Coll. Publ. 13, New
York, 1932.

42. K. Morita, Products of normal spaces with metric spaces, Math. Ann., 154 (1964) 365-382.

43. , Star-finite coverings and the star-finite property, Math. Japon., 1 (1948) 60-68.

44. K. Nagami, Paracompactness and strong screenability, Nagoya Math. J., 8(1955) 83-88.

45. J. Nagata, On a necessary and sufficient condition of metrizability, J. Inst. Polytech.,
Osaka City Univ., 1 (1950) 93-100.

46. M. E. Rudin, Countable paracompactness and Souslin’s problem, Canad. J. Math,,
7 (1955) 543-547.

47. , Souslin’s conjecture, this MoNTHLY, 76 (1969) 1113-1119.

48. Yu. M. Smirnov, On metrization of topological spaces, Uspehi Mat. Nauk., 6 (1951)
100-111 (A.M.S. Transl. No. 91).

49. R. Solovay and S. Tennenbaum, Iterated Cohen extensions and Souslin’s problem, Fund.
Math.

50. M. Souslin, Probléme 3, Fund. Math., 1 (1920) 223.

51. L. Steen, A direct proof that a linearly ordered space is hereditarily collectionwise normal,
Proc. Amer. Math. Soc., 24 (1970) 727-728.

52. L. Steen and J. A. Seebach, Counterexamples in Topology, Holt, Rinehart and Winston,
New York, 1970.

53. A. H. Stone, Paracompactness and product spaces, Bull. Amer. Math. Soc., 54 (1948)
977-982.

54. F. D. Tall, New results on the normal Moore space problem, Proc. of Washington State
Univ. Conf. on General Topology, 1970, 120-126.

55. H. Tamano, Normality and product spaces, General Topology and its Relations to Modern
Analysis and Algebra, 1966 Prague Symp., Academic Press, 1967, 349-352.

56. S. Tennenbaum, Souslin’s Problem, Proc. Nat. Acad. Sci. U. S. A., 59 (1968) 60-63.

57. D. R. Traylor, On normality, pointwise paracompactness and the metrization question,
Topology Conference, Arizona State Univ., (1967) 286-292.

58. J. W. Tukey, Convergence and uniformity in topology, Princeton, 1940.

59. A. Tychonoff, Uber einen Metrisationssatz von P. Urysohn, Math Ann., 95 (1926) 139-142.

60. P. Urysohn, Zum Metrisationsproblem, Math. Ann., 94 (1925) 309-315.

61. C. W. Vickery, Axioms for Moore spaces and metric spaces, Bull. Amer. Math. Soc.,
46 (1940) 560-564.

62. J. M. Worrell, Jr., and H. H. Wicke, Characterizations of developable topological spaces,
Canad. J. Math., 17 (1965) 820-830.

63. J. N. Younglove, Two conjectures in point set theory, Topology Seminar, Wisconsin
(1965), Princeton (1966), 121-123.

This content downloaded from 130.71.96.21 on Fri, 22 Mar 2013 14:22:09 PM
All use subject to JSTOR Terms and Conditions



http://www.jstor.org/page/info/about/policies/terms.jsp

	Article Contents
	p. 113
	p. 114
	p. 115
	p. 116
	p. 117
	p. 118
	p. 119
	p. 120
	p. 121
	p. 122
	p. 123
	p. 124
	p. 125
	p. 126
	p. 127
	p. 128
	p. 129
	p. 130
	p. 131
	p. 132

	Issue Table of Contents
	The American Mathematical Monthly, Vol. 79, No. 2 (Feb., 1972), pp. 111-226
	Front Matter
	Award for Distinguished Service to Professor Carl Barnett Allendoerfer [pp. 111-112]
	Award of the 1972 Chauvenet Prize to Professor Jean Francois Treves [pp. 112-113]
	Conjectures and Counterexamples in Metrization Theory [pp. 113-132]
	The Origins of Modern Axiomatics: Pasch to Peano [pp. 133-136]
	Emmy Noether [pp. 136-149]
	Mathematical Notes
	On the Fundamental Problem of Mathematics [pp. 149-150]
	Initial Digits for the Sequence of Primes [pp. 150-152]
	Another Proof of a Result of Perry on Chains of Finite Sets [pp. 152-157]

	Research Problems
	Identities on Matrices [pp. 157-158]

	Classroom Notes
	On Involutions of a Circle [pp. 159-160]
	Maxima and Minima of Functions of Two Variables [pp. 160-164]

	Mathematical Education
	Accreditation and Certification [pp. 164-168]
	A View of Computer Science Education [pp. 168-179]

	Problems and Solutions
	Elementary Problems: E2337-E2342 [pp. 180-181]
	Solutions of Elementary Problems
	E2280 [p. 181]
	E2281 [pp. 181-182]
	E2283 [pp. 182-183]
	E2284 [pp. 183-184]
	E2285 [pp. 184-185]
	E2286 [pp. 186-187]

	Advanced Problems: 5838-5841 [p. 187]
	Solutions of Advanced Problems
	5768 [pp. 188-189]
	5771 [pp. 189-190]
	5772 [pp. 190-191]
	5774 [p. 191]


	Reviews
	Review: untitled [p. 192]
	Review: untitled [pp. 192-193]
	Review: untitled [pp. 193-194]
	Review: untitled [pp. 194-195]
	Review: untitled [p. 195]
	Telegraphic Reviews [pp. 196-223]

	News and Notices [pp. 224-225]
	Mathematical Association of America: Official Reports and Communications
	Charter Flight to International Congress on Mathematical Education [p. 225]
	Calendar of Future Meetings [p. 226]
	Future Meetings of Other Organizations [p. 226]

	Back Matter



