
New Mo dels of the Real-Number Line

Recent developments in mathernatical logic reveal tltat tltere

are a number of alternative wa)rs of defining the continttLlm,

or connected nurnber system., to include all tlt,e rr:al, rtLLmbers

-f firtuallv all of mallrematics and
\/ rrr,r"h'nf science is based on tlre
V abstlact concept of the leal-nrrrn-

ber line: the continuum, or connected
number system, that includes all the real
nurlbels-zelo, positive and negative
integels, rational numbers (flactions)
and irrational numbers (such as r)-but
that excludes the "unreal," or complex,
numbers-explessions containing the
imagirraly numbel y=1. tlre leal-num-
bel corrtinuum not only plovides the nat-
ural setting for all the operations of
alithmetic and calculus but also selves
as our only intellectual model of time
and (one-dimensional) space. The plop-
erties of the continuum were organized
into a coherent axiomatic framework
duling the 19th century and have been
accepted and promulgated with great
conviction by most contempolary n'rath-
ematicians.

Yet in spite of the present unanimity
of opinion concerning the exact struc-
tule of the continuum several significant
alternative systems have been discov-
eled during the past 10 years. Although
none of these new models reflects any
Iogical flarv in the 19th-century theory,
their very existence shorvs quite clear'ly
that the epistemological foundation of
mathematical analysis is far from settled.

Ilthough mathcmatics is sometimes
I r called a science, it is usually distin-
guished from science by its relative in-
dependence flom empirical considera-
tions. The intellectual models of science
are judged by their ability to explain the
observed ploperties of the universe,
rvhereas those of mathematics ale
judged (by mathematicians) according
to their consistency and beauty and (by
scientists) according to their utility. Pla-
to's description of .n"rathematics as the
discovery of the properties of objects in
an ideal universe-the universe of Plir-
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tonic ideals-has beeu tl-re most enduring
and popular philosophy of mathernatics,
since it plovides mathematics with the
(scientiffc) discipline of confolming to
son-re kind of pelceived reality together
with the freedom to escape the bonds
of empilicism.

N{ost wolking mathematicians, at
least those not directly engaged in prob-
Iems of mathematical logic, tend to be

Platonists in the sense that they talk and
act as if the abstract objects they study
have some kind of enduling ideal ex-

istence. Standing in extieme opposition
to the Platonists are the Formalists, rvho
naintain that the essence of mathemat-
ics is not in its meaning but in its folm.

The problem of the natule of the real-
number line is viewed quite difelently
by adherents to these two schools of
thought. A Formalist is likely to say that
the real-number iine is whatever rve de-
ffne it to be; if we have several com-
peting defrnitions, then'"ve rvill have sev-
eral difielent real-number lines and
mathemp,tics will be enriched by their
presence. A Platonist, on the other hand,
would be inclined to rvonder rvhich of
the different models replesented the
"real" real-number abstlaction of the
space and time continuum,

Like beauty, mathematics exists in
the eye of the beholder'. Unlike beauty,
hor,vever, mathemdics enjoys an unpar-
alleled r.rorldwide reputation for objec-
tivity. If you labor to discover the plop-
erties of the real-number continuum and
iI I do likewise, we shall leach the same

conclusions. Science has a similar objec-
tivity. But whereas the objectivity of
science is a rather plausible consequence

of its conformity with reality, the objec-
tivity of mathematics is harder to ex-

plain. Why should the ideal mathemati-
cirl universe in your mind be the same as

the one in my mind?
Trvo centulies ago Immanuel Kant at-

tempted to ans$,er this question by pos-
tulatiug the a prioli existence in the hu-
man mind of a kernel of intuitive mathe-
matical and geometrical tluth. The con-
siderable influence of Kant's philosophy
reinfolced the wideiy held view that the
axioms of mathematics should be self-
evident truths. Euclidean geometry be-

came the archetype of mathematics,
since it was a beautiful, useful theot'y
created by logical deduction from cer'-

tain (nearly) self-evident axioms. In-
deed, Kant hin-iself had asselted that the
geometrical intuition of Euclidean space

and of the time continuum r'vas one of
the a priori characteristics of the human
mirrd.

Thus it came as a considerable shock
to the i.ntellectual community of the
early 19th century to learn of the dis-

covery of non-Euclidean geometries, in
r'vhich one of Euclid's axiorns (the paral-
lel postulate) did not hold. One signifi-
cant consequence of this discovery rvas

that philosophels and mathematicians
began to regard axioms not as self-evi-
dent truths but rather as arbitlary rules,
subject only to the requiren-rent of con-

sistency. For the axiorns to be great the
theory delived from them had to be both
beautiful and useful, but to be rnathe-
matics the theoly had only to be con-
sistent.

Yet in spite of the widespread 20th-
century consensus on consistency as the
sole criterion of mathematical truth, the
vast majolity of mathematicians and sci-
entists maintain a Platonic vierv of the
continuum. Nearly everyone who stud-
ied calculus in the past 50 yeals was ex-

pected either to have a clear intuitive
(Platonic) image of the real-number line
or to believe that all its properties rvere

consequences of some 10 to 15 suPPos-

edly self-evident truths that describe
what is calleri formally a "complete or'-

deled field" and informally the "real-



number system" lsce illustration on tlis
pagel.

A cynic might vierv this ploglam as

indoctrination in Platonism, since its
clear purpose is to convince students of
something their plofessors have accept-
ed, namely that thele is a unique real-
number line with certain self-evident
properties, and th:rt mathematicians
have succeeded, by listing the axioms of
a complete oldeled field, in capturing
the essence of this line in a dozen or so

sentences. Thus mathematicians norv
talk about /he real-number line just as

mathematicians and philosophels of the
18th century talked about f/i.e geon.retry.

Of course, the existence of different
geometries does not necessitate the ex-
istence of different real-rrun'rber lines.
Nonetheless, in I931 Kurt Gtidel shorvecl
that in any mathematical system suffi-
ciently large to contain arithmetic, there
will alrvays be ur.rdecidable sentences:
statements about the system that can be
neither proved nor disproved by Iogical
deduction fi'om the axioms lsee "Ciidel's
Proof," by Elnest Nagel and James R.
Ner'vman; ScmNrrrrc AnrinrceN, lune,
1956]. Gridel's nor.v farnous "ur.rdecid-

ability theorem" implies that in the Pla-
tonic universe of ideal mathematical ob-
jects thele are many-in fact, infinitely
many-objects that satisfy the axioms for
the real-number line, since each unde-
cidable proposition about the leal-num-
belline may be true in one ideal model
and false in another.

In 1963, more than 30 yeals after
Godel proved that diffelerrt models for
the real-number axioms must exist, Paul

J. Cohen of Stanfold University actuirlly
constlucted sorne models in r.vhich Georg
Cantor's fnmous "continuum hypothe-
sis" ."vas false Isee "Non-Ctrntorian Set
Theory," by Paul J. Cohen and Reuben
Hersh; ScrriNrrrrc Al.rnnrceN, Decem-
ber, 1967]. Cohen's methods have been
applied extensively over the past eight
years to yield a lalge valiety of altema-
tive models in all areas of n'rathematics.
Later in this alticle I shall shorv horv to
constluct one of these models for the
real-number line, but first I should like
to discuss an entirely difterent soulce of
alternative models, since Gridel's unde-
cidability theorem is not the only line of
attack on the Platonic ideal of the real-
number line.

p,ver since Isaac Nervtorr and Cottfried
L Leibrriz laid the foundatiorrs of cal-
culus in the late l7th century, mathema-
ticians, philosophers and physicists have
been quarreling about whether or not
the real-number line contains infinitely
small objects called infinitesimals. In-

finitesimals played a key role in the de-
velopment of the definitions and nota-
tions of calculus. Indeed, during the
l8th and l9th centuries the name for
what we now call simply "calculus" rvas
"calculus of inffnitesimals." What Nerv-
ton and Leibniz did was to shorv horv
one could calculate with infinitesimals
and obtain reliable lesults, results that
moreover could not be obtained by any
other method.

The calculus of infinitesimals u'as re-
ceived with plofound skepticisrn by
many philosophers rvho, follorving Aris-
totle, abhon'ed the absolute inffnite. In
his Plrysics Alistotle distinguished be-
trveen the potential infinite and the ab-
solute infinite, acceptirrg the former but
rejecting the latter as untenable, or be-
yond the firm glasp of the human mind.
(In taking this position Alistotle rvas

merely reflecting the r,videspread Greek
mistlust of the infinite, most popularly
illustrated by the paradores of Zeno.)
The philosophel Leibniz, somervhat cha-
grined at rvhat the mathematicinn Leib-

niz had r.vrought, squirmed out of the
dilemma by describing infinitesimals as
"fictions, but useful fictions." N{ean-
while Bishop Berkeley scorned Nerv-
ton's inffnitesimals (or fluxions, as Nerv-
ton called them) as "ghosts of departed
quantities."

But mathematics flourisl.red in spite of
the philosophers, arvakened by the cal-
culus of inffr.ritesimals as it had not been
since the glories of Athens and Alexan-
dria. The Platonic image of the real-
number line r.vas as yet only a vague
ideal, and calculus developed more as a
descriptive science than as a deductive
logical system. It rvas not until the 19th
century that mathematicians begau to
echo the philosophers'skepticism; it rvas
only then, as the axioms fol the real-
numbel system rvere distilled fi'om the
great unolganized mass of mystical
properties, that it became clear that the
existence of infinitesimals r.vas incon-
sistent r'vith these axioms.

This inconsistency is an immediate
eonsequence of one of the most char'-

1. Addition and Multiplication
lf xandyare real numbers,ihen so are x+ y and xy,

2. Associativity
lf w, x and y are real numbers,then (w + x) + y = w + (x + y) and (wx)y = w(xy).

3. Commutativity
ll x and y arereal numbers,thenx+y = y + x aad xy = yx.

4. Distributivity
lf w, x and y are real nr,rnrbers,then vt(x+ y) = wx + wy.

5. ldentities
Tlrere exist two special numbers z (or O) and u (or 1) ca1led the zero and the unit
that sat sly x+ z = x and xu = xlor all real nunrbersx.

6. Additive lnverse
lf x is any real nr-rnrber, there is another real nr-tmber denoted by -x and called
the negatrve or aclclltive rrrverse of x that satisf ies x + -x = z, where z is the zero.

7. Multiplicative lnverse
lf x is any real nurnber except zero, tl-rere is another real number x r, called tlre
rec procalor rlr-r trplicative irrverse of x, that sat sfies x x-1 = Lt, where u is the unrt.

8. Trichotomy
lf xand yare real numbers, then eitherx< y or x = y a( x >y.

9. Transitivity
lfw<xandx<y,Iienw<y.

10. lsotony
lf x< y, then x + w< y + w;if x < y and w > z (where ziszero), Ihen xw < yw.

1'l . Completion
Sr-rppose F rs a set of real numbers that has an upper bound, that is. srrppose
there is sonre real nurrber x such that y< x wlrenever y is a member of the set E,
Then E has a least r-rpper bound, that is, an upper bouncl x that is less than or
equal to every other upper bourrd for F.

ELEVEN AXIOMS are customarily used to define the real-number line, rvhich is knorvn
formally as a complete ordered field, The first seven axioms define a field; the first l0 define
an ordered field. The symbol > means "greater than"; the symbol ( means "less than."

93



acteristic ploperties of inffnitesimals,
namely that any multiple of an infini-
tesimal is still an infinitesimal. For in-
stance, the infinitesimal dt used in cal-
culus is smaller than every ordinary
positive real number, and so is every
multiple m(clx) lor any positive integer
m. Accordingly the set M of all multi-
ples of the infinitesimal dr has many up-
per bounds (any ordinary positive real
number will do), but it has no least up-
per bound, since for any given number
b that is an uppel bound for M the
smaller number b - dx rvill also be an
upper bound for M. Thus M fails to sat-
isfy the final axiom for the real-number
system, the "completeness" axiom.

Hence at the same time that geome-
ters were being forced to change their
criterion of truth from self-evidence to
consistency, analysts were discovering
that the supposedly self-evident axioms
for the calculus of infinitesimals were
inconsistent. What was to be done? The
answer, developed principally by Au-
gustin Cauchy and Karl Weierstrass,
rvas to abandon the infinitesimals but
keep the calculus (whence our present
abbreviated name for the subject).
Cauchy refolmulated the foundations of
calculus by substituting the concept of a
limit for that of an infinitesimal; his
method was a return to the Aristotelian
concept of the potential infinite as the
only secule basis fol reasoning.

Weierstrass extended Cauchy's rvork
by defining the concept of a limit in
terms of the more primitive concept of
real numbers. The Cauchy-Weielstrass
approach to calculus, now widely taught,
placed the epistemological foundation
of calculus squarely on the shoulders of
the real-number line. Although many
users of calculus continue to prefer the
intuitive language of infinitesimals, vir-

tually all 20th-century mathematicians
have adopted the deffnitions and con-
cepts of Cauchy and Weierstrass.

Within the past decade, hou'ever,
Abraham Robinson of Yale University
developed a consistent mathematical
theory of infinitesimals. This new theory,
called "nonstandard analysis," resusci-
tated the discredited ideas of the actual
inffnite and actual inffnitesimal and
showed how much of modern mathe-
matics could be consistently translated
into a language of infinities and infini-
tesimals. In particular Robinson's new
theory created a significant alternative
to the mathematician's real-number line
(alias the complete ordered field), an
alternative that contained infinitesimals
and on which calculus could be done in
the spirit of Newton and Leibniz.

Thus by the end of the 196O's there
were available on two different fronts
several pretenders to what can justiffably
be called the throne of mathematics: the
real-number line. Although the techni-
cal construction of each of these alterna-
tives is long and complex, there is a com-
paratively simple approach to both Co-
hen's and Robinson's models thlough the
theory of probability; I shall norv out-
Iine this approach, emphasizing its spirit
more than its detail.

pelore beginning this task it would be
u well to consider a somewhat subtle
philosophical issue. If we were attempt-
ing to prove the real-number line defec-
tive and to replace it with a better mod-
el, we would have to take great care to
avoid assuming the existence of the real-
number line while constructing the al-
ternative. This, however, is not what we
are trying to do. We are, rather, trying
to establish the existence of several dif-
ferent models of the real-number line,

including the oldinary Platonic ideal of
the complete ordered field. Therefore in
constructing our new models we shall
feel free to use the old one. (This proc-
ess is quite analogous to the one fol-
Iowed in the construction of the non-
Euclidean geometries, where the new
models are defined within the standard
Euclidean space.)

Let us now proceed to construct two
speciffc models for the real-number sys-

tem: one that will contain inffnitesimal
elements and another that will contain
a set that violates Cantor's continuum
hypothesis. Our method will be to con-
struct a general model and then to ob-
tain from it the two special models. The
symbol R will be used throughout the
discussion to stand for the ordinary real-
number line; when we write r e R, we
mean that r belongs to, or is a member
of, the set R, that is, r is a real number.

The objects in oul new models will be
real-valued functions I defined on some
set S. In other words, f is a rule that as-

signs to each point s belonging to the
set S a real number l(s) belonging to
the real-numbel set R. The symbolism

I : S + R expresses the fact that f causes

each point of S to be assigned a value
in R; the expression is usually read as "f
maps S to R" or, more formally, as "l is

a function from S to R." We shall use

the symbol Rs to denote the set of all
functions from S to R.

In older for us to see how RB can be-
gin to resemble the real-number system,
we must understand horv to do addition
and multiplication. Since the elements
of RB are functions (that is, rules), one
must in effect define the addition and
multiplication of rules. If f and g are
functions in Rs, we shall define f + g to
be the new function in Rs that assigns to
each point s belonging to the set S the
real number l(s) + g(s); in pure symbols,

ff + g)(r) : l(s) * g(s). Multiplication is

similar: (lg)(r) : l(r)g(r). It is quite easy

to show that the functions in Rs satisfy
the first six axioms of a complete ordered
field, listed in the illustration on the pre-
ceding page. A simple example, how-
ever, suffices to demonstrate that Axiom
No. 7, the "multiplicative inverse" axi-
om, is not satisfied by this set lsee illus-
tration at leftl. Thus RB fails even to be a
field and consequently falls far short of
being a model for the real-number line.

To correct this situation we shall en-
gage in a bit of mathematical gerryman-
dering. Axiom No. 7 does not say that
all elements of RB must have inverses;
it only says that if it is true that f does

not equal zero, then f must have an in-
verse. Accordingly if we have some func-
tions f (that is, elements of RB) that do

1, Suppose S is the two-po rrt set {0,1}.

2. Then each function /:S+R, which causes each point of S to be assigned a

value n the real-number set fil can be defined by g v ng two real nurrbers,
namely the va ue of lat O and the va ue of f aI 1.

3 The identrty element u be onging to the trial set fl s given by u(O) = u (1) - 1,

and the zero eleme nt z be long ng to fl' rs grven by zQ) = z(1) = 0,

4. Nowthefunction h belong ngto fl' def ned by h(O) Oand h(l) = 1

failsto satrsfy Axiom No, 7 since h is not equal toz and yet h does not have
an rlverse.

5. Therefore the set Rs rs rrot arr adequate modelof the real'nunrber ne,

FAILURE 6p ps (the set of all functions from some arbitrary set S to the real-number set
R) to satisfy Axiom No. 7, the "multiplicative inverse" axiom, is demonstrated in this ex-
ample. For the purpose of the demonstration S is assumed to be the two.point set [0,1].
The conclusion is that Rs falls far short of being a model {or the real-number line.
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not Ilave inveLses, rve shall simply re-

defrne truth so that for them the state-
ment "f equals zero" will be true. More
precisely, we shall substitute fol the ab-
solute notion of truth the more flexible
concept of probable truth. In order to
show horv this can be carried out, I must
digress for a rvhile to discuss some defi-
nitions and examples from elementary
probability.

\ I athemrtical plobability is blsed on
*lI a special iunction that ussigrrs to
each subset A of a given set Q a positive
real number that leplesents the proba-
bility that a point selected "at random"
from the set O will actually be in A. This
function is called a "probability mea-

sure" on the set O, and rve shall denote
it by nl. The functiorr nr can be thought
of as a rule thnt measures the size of
sets, and the real uutnber rtr(A) can be

thought of as the measure, or size, of tlte
set A" Since the probability is I that a
point selected at random from O will be

in Q, the measure of Q must be l. In ad-

dition lve require of nr only that it satis-
ly the (self-evidcnt?) maxim that the
rvhole is equ:rl to the sum of its parts: if
the ,'vhole set A is bloken dorvn into
finitely or infinitely marry distinct parts
Ar, A', .. ., An,. . ., then nt(A) : n(A1) -f
rn(A1) f ... 1 nr(A,) * ....

Befole applying tliis tneasule to our
set Rs I shall give trvo inpot'tarnt ex:tn-
ples of measules that rvill be used as the
basis for our tu'o diffelent rnodels for
the real-number line. Filst, suppose O
is the set N of positive integers: in syrn-

bols, N: { 1, 2, 3, ... } . We shall de-

fine on N a very crucle measure by classi-
fying subsets of N as small if they are

finite and lalge if they ale cofinite, that
is, if their complement (the set of posi-
tive integels not in them) is finite. Any
sn-rall set rvill be given measule 0 and
any lalge set rvill be given meirsure 1.

Norv, the measul'e on N as just defined
fails to measure sets such as the set of
even integers, since neither it nor its
complement is fir.rite. Tl.re ploblem is

thtrt the set of even firtegels is neither
smirll rol large but soruehorv in be-
t'"veen. We car colrect tl-ris deficiency in
our measule rn by systematically cltrssi-
{ying each intermediate set as eitl"rer

sl'rall ol lalge on an albitrary bnsis, sub-
ject only to the constlaints of consisten-
cy: each subset of a srnall set must be
small; each set that cortains a set ple-
viously clnssified as large must be lalge;
the complement of a small set must be
large, and vice versa. Once this has been
done oul measure u'ill assign a value of
either 0 or I to every subset of N; lve
shall call lr the cofinite rneasuLe on N.

For our second example let us take for
the set O the unit interval I that consists

of all real numbers betrveen 0 and l; in
symbols, I-{reR] 0 < r ( 1}. We
build up a measure rit. on the subsets of I
by ffrst assigning to each interval its
length. Then for a subset A that colsists
of pieces that are intervals u'e use the
maxim that the rvhole is equrrl to the
surn of its parts to say tl-rat the rne:lsut'e

of A is the sum of the lengths of its
pieces. Continuing in tl.ris fashion, lve
can build a probability measure on I
tlrat is kno"vn as the Lebesgue neasure
(named after the 2Oth-centuly Frer.rch

mathematician Henli Lebesgue).
Since each point r belonging to the

set 1 is considered to be an intelval of
length 0, the Lebesgue nteasure nr. of
each point r is 0. According to the cou-
struction just desclibed, each finite set

r.vill also have measule 0, as u'ill each

infinite set that cau be r'vlittetr as a se-

quence x1, xa, xr,. . . (since the nreasule
of the entire sequence is just the sum of
the rneasules of each of its points). Since

tl-re set of rational numbers in 1 can be

listed in a sequence (I, I/2, l/3, 2/3,
l/4, 2/1, 3/1, ...) it too must have
measule 0, even though it appears to be

a very large set. In othel rvords, the
chances are nil thtrt a numbel selected
at random from the unit intelval rvill be

rational.
This minor paladox leads directly to

a major paradox concerniug the Le-
besgue measure. If I select a nrlmber at
random from the unit interval, the prob-
ability is 0 that the number so chosen
rvill equal some particular pleviously
selected number; intuitively there ru'e

just too many nurnbers in the unit inter-
varl to choose from. Yet the probability
that I shall pick some number in the unit
interval is 1. Thus in this cnse it apperrls

that the r'vhole is not equal to the sun'r

of its parts! This dilemma lias plagued
v:rrious philosophels throughout histoly;
horv can something of positive rveight be

made up of parts that etrch have zet'o

rveight?
The tlouble is that there al'e too martv

points in the unit interval. Cantor called
countable those inffnite sets that cau be

rvlitten as a sequellce xb N., x:t, . . ., orte

poirt fol eirch integer'; othel infinite scts

are called uncount:rble. The plinciple
that the rvhole is equal to the sum of its
parts applies only if the collection of
palts is finite or cnuutable. IIence the
measule of the set of lational nurnbers
given above is 0 because the set of ra-
tiorrals can be written as a sequeuce iu
r.vhich each term has measure 0. Similar
reasoning does not allorv us to corrclude
that the measure of the interval I is 0

because I cannot be u'ritten as a se-

quence. (The fact that the urrit interval
I is an uncountable set is actually a very
famous theolem of Cantor's.) It follorvs
that R, rvhich contains I, is also uncount-
able.

\Yf e noru retuln to oul oliginal task of
\l l,uildi'rg nrodels for thl real-tturn-

bel line. We hLrd cor-rstructed the set Rs

of functions flom S to R and slrorved

horv this set failed to satisfy Axiom No.
7 for complete ordered fields. In older
to correct this defect in Rs rve shall r-rotv

assurne that S is equipped rvith a prob-
ability measure nl, so thlt rve shall be

able to measure the size of subsets of S.

The rnost plimitive sttrteurent that
can be made concerning trvo fuuctions
in Rs is that they are equal (or unequal).
If I and g are given, then "f equals g" is
eithc:r true or false. It is true if ald or-rly

if l(r) equals g(r) fol all points r belong-
ing to the real-numbel set R. In other
rvolds, f c'quals g if and only if f and g
c\pl'ess the strme rule. If tl'rele is in R so

much as one poir.rt y rvhere l(y) does not
equal g(y), then rve ale forced to say

that the function f does not equal the
function g-even if they aglee at every
other point of R. Logicians call the terrns
"tlue" and "false" tluth values. In tra-
ditional logic (rvhich rve have used

throughout this discussion) sentences

hirve only trvo truth vllues: true or fa]se'

We propose to change this tladition
by assigning to sentences not just one

of two possible tluth virlues but a leal
numbel that expresses the probtrbility of
truth; this number may be 0 (if the sen-

tence lus no chauce of being tlue) or I
(if the seltence is certain to be true) or
any nunrber in betu'eeu. We can accorn-

plislr ilris coup d'6tat ou Rs because rve

no."v hnve a [leans of measuling the size

or probability of subsets of S. In par-
ticular rve shall srry thnt the probtrbility
that "l equnls g" is tlue is the neasure
of tlie set of points in S rvhere it really
is true, that is, the measut'e of the set of
all points s belonging to S tltat satisfy
the lequirenrent tlrat l(s) equal g(s). If
rve delote this plobability truth value
of "f equals g" bV If - gl, rve hrrve :f =
Sl : rn1{s e S I f(s) : g(s)}).

Of course, thele trre a lot of scltetrces
about RN that are firr mole c<ln-rplicated

thau the plirnitive sentences ol the forrn
"f ciluals g." All thc mot'e conrplex seu-

tences, horvever, cirtr bc built up frorn a

ferv plirnitive otres, r.vhich are called,
natulally ellough, atornic sentences.
What r.ve have to do to make our levolu-
tion in truth v:rlues succeed is, begin-
ning rvith the aton'ric sentences, to sys-

ternatically rvork our rvay through the
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CONSIDERABLE SIMILARITY exists between the rules that govern the use in logic of
the connectives 'oand," ooor" and oonot," and the operations on sets of, respectively, inter-
section (d), union (b) and complementation (c). This similarity (in fact, a mathematical
isomorphisrn) was discovered by the lgth-century English mathematician George Boole,
and the abstract system based on it is norv called Boolean algebra. The symbol [)] stands
for the set where the sentence > is true; IfI]l siSnifies the set where the sentence JI is true.
The intersection of these two sets, symbolized [>] n In], is the set where the sentence
") anil II" is true; the union of these two sets, [>n U [II], is the set where ") or fl" is
true. In the example of complementation S - [)] signifies the set where 'onot )," is true.
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entire catalogue of sentences about RB

and determine how to assign a probabil-
ity to each sentence in such a rvay that
it represents the measure of the set of
points in S r'vhele the sentence is true.

f he basic idea belrind tlris sclreme wls
r orrtljned more than 100 years ago
by the English mathematician George
Boole, who noticed that there was a con-
siderable similality (in fact, a mathe-
matical isomorphism) between the rules
that govern the use in Iogic of the con-
nectives "and," "or" and "not," and the
operations on sets of, respectively, in-
tersection, union and complementation
[see illustration at left]. The abstract
mathematical system that represents th'is

structure is now called a Boolean alge-
bra. To see how Boole's system can be
used to solve our problem let us con-
sidel a simple example.

If ) is a sentence about Rs, we shall
denote by [:] the set of all points in
S rvhere ) is true, and by l:l the mea-
sure of [)]. Thus ]:l : m([>]) is the
probability truth value of the sentence
>. If II is anothel sentence about Rs,
then one of the Boolean relationships
is that [) and n] : [)] fl [il]. In
rvords, the set of points in S where both
) and fI ale tlue is the intersection (de-
noted by 1-l) of the set where ) is true
rvith the set whele II is true.

Perhaps the only detail in our plan (to
extend the probability truth values from
atomic sentences to all sentences) that
requires special comment is the treat-
ment of the quantiffers V (meaning "for
all") and 3 ("there exists"). The sen-
tence "Vsfl(s)," which we read as "For
all points s belonging to the set S, the
sentence II(s) is true," means that II(s1)
and II(sr) and ... (ad infinitum) are all
true. In other words, V is an infinite
repetition of "and." Thus it is appropri-
ate that the set operation that corre-
sponds to V is the inffnite intersection,
since the ordinary (finite) intersection
corresponds to "and." Similarly, 3 rep-
lesents an inffnite "or," so that its corre-
sponding set opelation is the infinite
union.

In summary, then, although we have
by no means discussed all the relevant
detail, it is possible by means of the
Boolean translation to determine for
each sentence ) about RB a subset [)]
of S on which ) is true. The measure of
this set is the probabiiity truth value of
), denoted by l:1. A sentence I will be
considered valid if and only if l>l : 1;
in other words, ) is valid if and only if
the measure of the set where ) fails to
hold is 0, so that there is "no chance" of
failule. The examples of measures given

I
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above reveal the essential distinction be-

tween the concept of truth in the two-
valued logic and the concept of validity
in the probability-valued logic; for ) to
be true it must hold without exceptiotr
for all points s belonging to the set S,

but it remains valid even if it fails to
hold on a fairly large subset, provided
only that the measule of the exceptior.ral

set is 0.

Let us denote by RB/m' the set RB

rvith the new concept of vaiidity as de-

termined by the measule m. We have
seen that under the former notion of
truth Rs did not satisfy the axioms for
a complete oldered field. But Rsz'rn will
always be an ordered field because, on
the basis of the concept of validity, it
will always satisfy axioms No. I through
No. 10. Furthermore, fol certain choices

of S and m it rvill also satisfy the com-
pletion axiom, so that in these cases

Rs,/rn will be a complete ordered field.
Suppose S is the set of positive irr-

tcgers N 
"vith 

the cofinite measul'e t??

defined above in our' first example of
measures; nr assigns to finite sets the
value 0, to cofinite sets the value 1 and
to irrtermediate sets eithel 0 or 1 accold-
ing to some arbitrary but consistent pat-
tern. In this case we can picture each

function I belonging to Rs as a sequcnce

f ,, f ,, f t,. . ., r.vhere for each integel i be-
longing to N: S, 11 is the real number
that f assigns to i; f; is just rvhat we usu-
ally call l(l). For example, the identity
function zr is the sequence 1, l, 1, 1, . . .,

since a, - u(i) - 1 for each i belonging
to N: S.

Given S and tn as defined above,
Ils/m contains both infirritesimals and
infir'rite elements. The futrction I de-
fined by the sequence 1,1/2, L/3, l/1,
. . . is an infinitesimal, since if rve multi-
ply it by any integer r.r., the resulting se-

quence n, n/2, n/3, n/4, .. . is smaller
tharr the identity element u except for
tlie finite set {n, n/2, n/3,..., n/(rt-
7), n/nl, rvhich has measure 0. In other'
u'olds, if n(n) is thc sentence "nf is less

than u," then ln(rz)l : I because{i c Nl
nf (i) < u(i)\ has measrrle 1. Thus

lvntt(n)l : 1, rvhich is to say that for
every n, rif is less than u. Thus f is an

infinitesimal since only an infinitesimal
could have this ploperty.

For a difierent pelspective let us look
at the multiplicative inverse of f; f rnust
have an inverse since Rs,/rn is a field.
In reality the function g defined by the
sequence L, 2, 3,4, . . . is the invelse of

f since, clear'ly, gf : u. Just as f is 1n
inffnitesimal, so g must be infirrite. In
fact, if n denotes the constant function
n, n, n, ..., then lg> rrl:m(\i1gi)
nt\) - m(ltlt> nl): 1, since the set

in question is cofinite. Thus in RS/m it
is valid to say that g is greater than n
for all n,. This is just what we mean when
\\,e say that g is infinite.

We have now achieved the first of
our two goals: the description of a math-
ematically consistent model of the real
numbers that contains infinitesimals.
The other type of model, in rvhich Can-
tor''s continuum hypothesis fails, re-
quires some more wolk. First, hor'vever,
I shall explain Cantor''s hypothesis.

I antor developed his theoly of cardi-
v nal numbels by defining two scts as

being of equal size (or of the same "caL-

dinality") if thele is some function, or
rule, that establishes a one-to-one cor-
respondence between them. All finite
sets u'ith the same number of elements
have the same cardinality, and all in-
finite sequences have the same cardi-
nality as the set of integers. (The sets in
this latter category are those that r've

have called countable.) Cantor's gleat
achievement '"vas to assign sizes (cardi-
nal numbers) even to the uncountable
sets. In particular he identified a class

of sets of the same cardinality as the set

of real numbers R; he called the cardi-
nal number of sets in this class c, for
continuum. Sets of size c are those that
can be put into one-to-one collespon-
dence with the real numbers.

Cantor's continuum hypothesis is

simply this: Every infinite set of real
numbels is either countable or of car-
dinality c. There are no sets of interme-
diate size. This hypothesis was formu-
lated (but not proved) by Cantor late in
the 19th century, and it rvas listed in
1900 by David Hilbert as the first of
his celebrated 23 problems for 20th-cen-
tury mathematics. We shall norv out-
line a version of Cohen's 1963 model
that shorvs conclusively that Cantor's
continuum hypothesis could never be
proved from the oldinaly axioms of set
theoly and leal numbers.

This nerv model, developed principal-
ly by Dana S. Scott of Princeton Univer-
sity, involves the use of a rather compli-
cated set S in the general model RB,/nz.

We first have to find a very large set T,
a set rvhose cardinality is bigger than c,

the cardinal number of R. The ploof
that such sets exist is anothel of Cantor''s
significarrt contributions to mathen'ratics.
An example of such a set is r'vhat is

cnlled the power set of R: the set that
consists of all subsets of R. Cantot''s
proof that the cardinal number of this
set is indeed bigger than c is essentially
the same as his proof that R, or equiva-
lently the unit interval 1, is strictly big-
ger than the set of integers.

Let 1 denote the unit interval (I :
{renl0(r(r}), and Iet T be a
set rvhose cardinal number is bigger'
than c. Then we define S to be tlre set

t'':\f :T-+I ]. The points of S ale
functions flom T to 1. The measure on
S, rvhose details need not concern us,
is a rather natulal extension to l?' of
the Lebesgue measule on 1 desclibed
above. Our ner'v model for the real-num-
ber line is RB /m' where S equals 1".

The fact that the points of S are real-
ly functions can be the sout'ce of some

conceptual difficulty if lve confuse the
functions in S :1?' rvith those in Rs.

Nlathem:rticians avoid this confusion by
emphasizing in their minds that S is a sel

of functions rather than a set of functions.
We put up with this double meaning be-

cause the entire key to Scott's model is

a deliberate pun formed by interchang-
ing the role of functions and points.

To be precise, r've observe that each

point / belonging to the set T can be
thought of as a function in Rs tl'rat as-

signs to each function f belonging to
11 : S the real number l(t) belonging to
1. If rve call the function t by the name
i, then i(i) equals f(r) whenever f is a
member of S. Norv our problem is to ffnd
a subset of Rs that is urrcountable, yet
not as large as RB. But just how Iarge is

Rs? Since it contains a i lor each , be-
longing to T, the cardinality of Rs must
be at least as large as that of T, but T
was selected so that its cardinality r'vas

larger than c. Hence the cardinality of
Rs, oul new real-number line, is gleater'
than c, the caldinality of the oid real-
number lirre R.

Since the nerv real-number line is so

vely much bigger than the old one, it
rvill be much easier to find in the nerv
line an uncountable set that is not of the
same cardinality as the entire line. All we
have to do is select a subset P of T r.vith
the ploperty that the caldinality of P

is c. (If rve had been thinking of '/' as the
porvel set of R, then we could take R
itself for P.) Tlien the set P that consists

of iill the functions i fol t belonging to P
is a subset of Rs of size c. Thus P is un-
countable, yet it is not as large as RB.

This completes oul progt'arn of con-

stlucting lelv models of the reai-number
line. To summarize bliefly, each model
consists of functions flon some set S to
the ordinaly real-number line R. The
trvo-valued true-false logic of the old
system is replaced with a mole flexible
probability-valued logic determined by
some measure on the set S. Validity in
the ner'v model means truth rvith prob-
ability 1, a definition that glants excep-

tions to sets of measure 0. The particu-
lar models that contain infinitesimals or
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counterexamples to the continuum hy-
pothesis are then folmed by selecting
special sets S r'vith special probability
measul'es ?n.

Jn ihe pleccding dcvelopment ol thc
I tr,'n 'r'"ru models o[ the rcal-numlrer
ljne I not only omitted all proofs and
technical detail but I also failed to nen-
tion a most irnpoltant distinction be-

tq'een thesc trl'o models: the Cohen-
Scott model (u4rere S equals 1'l ) is a

cornplete ordered field, 
"vl'rereas 

the
Robinson model (*'hcle S equals N) is

just an oldeled field. The fact that Rob-
insorr's n.rodel fails to be cornplete should
come as no surprise, fot's'e did see that
any r-eal-number line that contained in-
finitesimals could not satisfy Axiorn No.
11. To complete the discussion of these
models I should explain trvo things: Why
sl-rould the tu'o r-r'rodels behave diffelent-
ly u'ith r-cspect to Axiom No. 11, and by
',r'hat ligl'rt can we call ar.r object (such

as Robirison's model) that fails to satisfy
Axion'r No. 11 a leal-numbel line?

The ansrvers to both questions de-

pend on a distinction that logicians make
betrveen u'hlt ale cllled fir'st-order sen-
tences and higl'rer-ordel sentences. In-
tuitively tr fir'st-older sentence about the
real nurnbcls is one that makes generali-
zations only about real numbers and not
about such highel abstlactions as func-
tions ol sets of lcal numbers; in techni-
ciil terms a fir'st-olcler sentence is one
in which the quantifiers (V and 3) are

limited to real numbels. All the axioms
of a complete ordered field are fir'st-
order sentences except fol the comple-
tion axiom (No. 1l), rvhich talks about a
ploperty of cll subsets.

Norv, the models of nonstandard
analysis (such as the fir'st of oul tr.vo ex-
amples) have the property that every
fir'st-oldcr sentence that is true about R
is true about them, and convelsely, In
othel r.r'ords, it is impossible to distin-
guisl'r betrveen these nerv models and R
by the use of first-oldel sentences. Since
a large part of calculus can be expresscd
in fir'st-ordel sentences, it is quite litelai-
ly true that for most practical purposes
the nonstandard real-number line is the
same as the oldinaly leal-number line.

The efiort required to shorv that the
completeness axiorn is satisfied by some
palticulal model Rs/rn is decidedly
more stLenuous than any of the ideas dis-
cussed above. Not only is tl-re axiom it-
self mole difficult to verify, but also be-
fore rve can even consider it rve must
wolk quite hard to extend the machinery
of assigning plobability tluth values
fron-r first-older sentences to higher-
order sentences. This extra effolt is nlso

lequired to pl'ove that in oul second ex-
ample the probability is zero that tl.re

continuum hypothesis is true-since the
continuum hypothesis is also a higher-
order sentence.

There is a striking analogy between
the cleation of these new models fol the
real-number line and the development of

quantum mechanics. The most common
delivation of quantum mechanics fi'om
classical mechanics is accomplished by
substituting in the classical theoly a wave
packet or plobability cloud for each clas-
sicnl particle. In the quantum model the
locrrtion of the palticle in the cloud is
given bv a plobability distribution and
the prilticle itself becomes a random
varirrble.

The nerv models for tl"re leal-number'
line that u.ele dcscribed above ale
forn'red in just this rvay. Wc substituted
fol the oldinary leal numl>crs cet'tain
real-valued functions defined on a plob-
ability space. These functions are ple-
cisely u4rrrt statisticians and probribility
tl'reorists call random variables. The sub-
stitution of landon-r valiables for real
numbers \\ras accompanied by a col're-
sponding chauge from a trvo-valued
logic to a more goneral scheme in u,hich
the truth value of a statement about the
real nurnbels is expressed by a probabil-
ity. This tlansition from trvo-valued to
probability-valucd iogic also occuls in
the derivation of <luanturn nechanics
from classical mechanics, since questions
about the state of the n-rcchanical svs-

tem that in tlre classical frarnt'rvotk
could be ansrvered by "Yes" or' "No" can
in quantum theory only be ansrvered
r.r,ith a probability.

One of the best-knorvn consequences
of quantum mechanics is Werr-rcr Hei-
senberg's uncertainty plinciple, rvhich
places an absolute limit on the amount
o{ information that can be obtained by
a physicist thlough the proccss of ob-
serving a particie. Hcisenbelg's plinci-
ple is delived by a plocess of self-reflec-
tion in rvhich the obselvel analyses the
e{Iect that liis actions have on the systen-r

he is obselving.
In mathematics, analogously, one de-

duces fi'om the action of rvliting dorvrr
axiorns and theolems (r'vhich is to the
matl-rematician u4rat experimental ob-
servation is to tl-re physicist) a limitation
on the amount of infoln'ration that can
be derived from a set of axion-rs (in tlie
Giidel-Cohen case) and a limitation on
the capability of axiom systems to de-
scribe models uniquely (in Robinson's
theory). The first of these tu'o limita-
tior.rs is the substance of Gcidel's unde-
cidability theorern, rvhereas the second
is one version of a more general result
knor.vn in mathematical logic as the
Lorvenhein-r-Skolem theolem. In differ'-
ent ways each limitation e\plesscs a

basic uncertainty in mathematics.

I t is not surplising that the intloduction
r of "unceltainty" results in mlthemat-
ics rvas accompanied by fundamental

** *-t

fl - Rea number iine

e - "3elo'rgtsto't " sa rrenrberof " (as n r e F. that s,rbeongs
to or s a nre rbcr ol, the set of rcar trlrnrbers B lrence x s a real ntrnrber)

/:S+rR - A fLmct or lthat carsescach po ntoilhc set S to be
a:,s gr.retl a vaiLrc l tlte rea rtr,rrtiter set R

r9'' - The set oi a f Lrrct orrs f rorl 5 to R

m(,4) - The probab ty nreasL.re of the set A

I A r' :rr " R

IIl - f he set ol all po nts n S where I s trlre

Thc truth va,l-re o{ the sertence I, that s the probab 1 ty measure of II]
a so written m(flI[)

fl - Another scntcnce about t9s

n : ntersect on of two sets

\, - Union of two sets

V: "Fora '

I : "There ex sts"

c - Cartor's synrbol for the card nal nuinber of tlre cont nuum

GLOSSARY OF SYI-IROLS used in this article is provided in this il]ustration. The symbol
c, used by Georg Cantor to signify continuum, denotes the cardinal number of sets in the
class of infinite, uncountable sets of the same cardinality, or size, as the set of real numbers R.
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disagleement about their significance,
just as Heisenbelg's unceltainty plinci-
ple precipitnted arnong physicists a ma-
jor dispute about its ultimate significirnce.
\'Iost physicists tend to agree with Niels
Bohr that the uncertninty in quantum
mechanics is a fundamental larv of na-

ture. Some, however', stippolt tl-re posi-
tion of Albelt Einstein, who argued thrrt
the uncertainty principle melely express-
es a limitation on the plesent conceptr:al
folrnulation of physics.

These two opposite poles in physics
re{lect apploximtrtely the positions of
tl're Formrrlist and the Platonist in n'rath-
ernatics. The Forn'ralist believes tlrnt
mathematics is pule folm, and since the
"ulcertainty" theolems of mathematics
limit the scope and por.r,er of the formal-
isrn rvith which mathematics is con-
cerned, then they must forever limit
mathematics itself. For a Foln'ralist the
question of whethel the "real" real-num-
ber line satisfies the continuum hypothe-
sis ol contains infinitesimals is as mean-
ingless as is, for a physicist such as Bohr',
the question of whether or not an elec-
tron "really" has an exact simultaneous
position and velocity. Robinson himself
reflects this position r'vhen he rvrites (in
a paper titled "Folmalism 64") that "any
mention of infinite totalities is literally
meaningless."

In contrast, the Platonists, rv}ro count
among their number even Gtjdel him-
self, believe (like Einsteilr) that the un-
decidabiiity in mathematics is a state-
ment about the inherent limitations of
our present axiomatic mode of investiga-
tion and not about the mathematical ob-
jects themselves. Gridel has algued that
there is no leason to believe more in the
objective existence of a physical object
such as an electron than in the objective
eristence of a mathematical object such
as the real-number line. And one who
believes that the real-number line has
an existence in a Platonic univelse can
Irarldly avoid wondeling about rvhich of
our several models is the more accurate
descliption of this Platonic continuum.

It is ironic that Robinson, the le-crea-
tol of infinitesimals, does not believe
they really exist, rvhereas Giidel, the
plophet of undecid:rbility, believes in a
Platoriic univelse in which the ploper-
ties of mathematical objects are visible
for those rvho liave the eyes to see. Per-
harps these men are merely reflecting an
intense rnodesty about the significance
of their or.vn achievements. It seems

unlikely, however, that rvithin the next
few generations mathematicians rvill be
erble to aglee on whethel every math-
ematical statement thnt is tlue is also
krrott irble.
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