New Models of the Real-Number Line

Recent developments in mathematical logic reveal that there

are a number of alternative ways of defining the continuum,

or connected number system, to include all the real numbers

irtually all of mathematics and
&/ much of science is based on the
abstract concept of the real-num-
ber line: the continuum, or connected
number system, that includes all the real
numbers—zero, positive and negative
integers, rational numbers (fractions)
and irrational numbers (such as =)—but
that excludes the “unreal,” or complex,
numbers—expressions containing the
imaginary number v/—1. The real-num-
ber continuum not only provides the nat-
ural setting for all the operations of
arithmetic and calculus but also serves
as our only intellectual model of time
and (one-dimensional) space. The prop-
erties of the continuum were organized
into a coherent axiomatic framework
during the 19th century and have been
accepted and promulgated with great
conviction by most contemporary math-
ematicians.

Yet in spite of the present unanimity
of opinion concerning the exact struc-
ture of the continuum several significant
alternative systems have been discov-
ered during the past 10 years. Although
none of these new models reflects any
logical flaw in the 19th-century theory,
their very existence shows quite clearly
that the epistemological foundation of
mathematical analysis is far from settled.

Nthough mathematics is sometimes

ccalled a science, it is usually distin-
guished from science by its relative in-
dependence from empirical considera-
tions. The intellectual models of science
are judged by their ability to explain the
observed properties of the universe,
whereas those of mathematics are
judged (by mathematicians) according
to their consistency and beauty and (by
scientists) according to their utility. Pla-
to’s description of mathematics as the
discovery of the properties of objects in
an ideal universe—the universe of Pla-
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tonic ideals—has been the most enduring
and popular philosophy of mathematics,
since it provides mathematics with the
(scientific) discipline of conforming to
some kind of perceived reality together
with the freedom to escape the bonds
of empiricism.

Most working mathematicians, at
least those not directly engaged in prob-
lems of mathematical logic, tend to be
Platonists in the sense that they talk and
act as if the abstract objects they study
have some kind of enduring ideal ex-
istence. Standing in extreme opposition
to the Platonists are the Formalists, who
maintain that the essence of mathemat-
ics is not in its meaning but in its form.

The problem of the nature of the real-
number line is viewed quite differently
by adherents to these two schools of
thought. A Formalist is likely to say that
the real-number line is whatever we de-
fine it to be; if we have several com-
peting definitions, then we will have sev-
eral different real-number lines and
mathematics will be enriched by their
presence. A Platonist, on the other hand,
would be inclined to wonder which of
the different models represented the
“real” real-number abstraction of the
space and time continuum.

Like beauty, mathematics exists in
the eye of the beholder. Unlike beauty,
however, mathematics enjoys an unpar-
alleled worldwide reputation for objec-
tivity. If you labor to discover the prop-
erties of the real-number continuum and
if I do likewise, we shall reach the same
conclusions. Science has a similar objec-
tivity. But whereas the objectivity of
science is a rather plausible consequence
of its conformity with reality, the objec-
tivity of mathematics is harder to ex-
plain. Why should the ideal mathemati-
cal universe in your mind be the same as
the one in my mind?

Two centuries ago Immanuel Kant at-

tempted to answer this question by pos-
tulating the a priori existence in the hu-
man mind of a kernel of intuitive mathe-
matical and geometrical truth. The con-
siderable influence of Kant’s philosophy
reinforced the widely held view that the
axioms of mathematics should be self-
evident truths. Euclidean geometry be-
came the archetype of mathematics,
since it was a beautiful, useful theory
created by logical deduction from cer-
tain (nearly) self-evident axioms. In-
deed, Kant himself had asserted that the
geometrical intuition of Euclidean space
and of the time continuum was one of
the a priori characteristics of the human
mind.

Thus it came as a considerable shock
to the intellectual community of the
early 19th century to learn of the dis-
covery of non-Euclidean geometries, in
which one of Euclid’s axioms (the paral-
lel postulate) did not hold. One signifi-
cant consequence of this discovery was
that philosophers and mathematicians
began to regard axioms not as self-evi-
dent truths but rather as arbitrary rules,
subject only to the requirement of con-
sistency. For the axioms to be great the
theory derived from them had to be both
beautiful and useful, but to be mathe-
matics the theory had only to be con-
sistent.

Yet in spite of the widespread 20th-
century consensus on consistency as the
sole criterion of mathematical truth, the
vast majority of mathematicians and sci-
entists maintain a Platonic view of the
continuum. Nearly everyone who stud-
ied calculus in the past 50 years was ex-
pected either to have a clear intuitive
(Platonic) image of the real-number line
or to believe that all its properties were
consequences of some 10 to 15 suppos-
edly self-evident truths that describe
what is called formally a “complete or-
dered ficld” and informally the “real-



number system” [sce illustration on this
pagel].

A cynic might view this program as
indoctrination in Platonism, since its
clear purpose is to convince students of
something their professors have accept-
ed, namely that there is a unique real-
number line with certain self-evident
properties, and that mathematicians
have succeeded, by listing the axioms of
a complete ordered field, in capturing
the essence of this line in a dozen or so
sentences. Thus mathematicians now
talk about the real-number line just as
mathematicians and philosophers of the
18th century talked-about the geometry.

Of course, the existence of different
geometries does not necessitate the ex-
istence of different real-number lines.
Nonetheless, in 1931 Kurt Godel showed
that in any mathematical system suffi-
ciently large to contain arithmetic, there
will always be undecidable sentences:
statements about the system that can be
neither proved nor disproved by logical
deduction from the axioms [see “Godel’s
Proof,” by Ernest Nagel and James R.
Newman; SCIENTIFIC AMERICAN, June,
1956]. Godel’'s now famous “undecid-
ability theorem” implies that in the Pla-
tonic universe of ideal mathematical ob-
jects there are many—in fact, infinitely
many—objects that satisfy the axioms for
the real-number line, since each unde-
cidable proposition about the real-num-
ber line may be true in one ideal model
and false in another.

In 1963, more than 30 years after
Godel proved that different models for
the real-number axioms must exist, Paul
J. Cohen of Stanford University actually
constructed some models in which Georg
Cantor’s famous “continuum hypothe-
sis” was false [see “Non-Cantorian Set
Theory,” by Paul J. Cohen and Reuben
Hersh; Scienrtiric AMERICAN, Decem-
ber, 1967]. Cohen’s methods have been
applied extensively over the past eight
years to yield a large variety of alterna-
tive models in all areas of mathematics.
Later in this article I shall show how to
construct one of these models for the
real-number line, but first I should like
to discuss an entirely different source of
alternative models, since Godel’s unde-
cidability theorem is not the only line of
attack on the Platonic ideal of the real-
number line.

Ever since Isaac Newton and Gottfried
Leibniz laid the foundations of cal-
culus in the late 17th century, mathema-
ticians, philosophers and physicists have
been quarreling about whether or not
the real-number line contains infinitely
small objects called infinitesimals. In-

finitesimals played a key role in the de-
velopment of the definitions and nota-
tions of calculus. Indeed, during the
18th and 19th centuries the name for
what we now call simply “calculus™ was
“calculus of infinitesimals.” What New-
ton and Leibniz did was to show how
one could calculate with infinitesimals
and obtain reliable results, results that
moreover could not be obtained by any
other method.

The calculus of infinitesimals was re-
ceived with profound skepticism by
many philosophers who, following Aris-
totle, abhorred the absolute infinite. In
his Physics Aristotle distinguished be-
tween the potential infinite and the ab-
solute infinite, accepting the former but
rejecting the latter as untenable, or be-
yond the firm grasp of the human mind.
(In taking this position Aristotle was
merely reflecting the widespread Greek
mistrust of the infinite, most popularly
illustrated by the paradoxes of Zeno.)
The philosopher Leibniz, somewhat cha-
grined at what the mathematician Leib-

niz had wrought, squirmed out of the
dilemma by describing infinitesimals as
“fictions, but wuseful fictions.” Mean-
while Bishop Berkeley scomed New-
ton’s infinitesimals (or fluxions, as New-
ton called them) as “ghosts of departed
quantities.”

But mathematics flourished in spite of
the philosophers, awakened by the cal-
culus of infinitesimals as it had not been
since the glories of Athens and Alexan-
dria. The Platonic image of the real-
number line was as yet only a vague
ideal, and calculus developed more as a
descriptive science than as a deductive
logical system. It was not until the 19th
century that mathematicians began to
echo the philosophers’ skepticism; it was
only then, as the axioms for the real-
number system were distilled from the
great unorganized mass of mystical
properties, that it became clear that the
existence of infinitesimals was incon-
sistent with these axioms.

This inconsistency is an immediate
consequence of one of the most char-

1. Additién and Multiplication
2. Associativity

3. Commutativity

4. Distributivity

5. Identities

6. Additive Inverse

7. Multiplicative Inverse

8. Trichotomy

9. Transitivity

Ifw<xandx<y, then w<y.

10. Isotony

11. Completion

If x and y are real numbers, then so are x+ y and xy.

If w, xand y are real numbers,then (w+ x) + y =w+ (x + y) and (wx)y = w(xy).

If xand y are real numbers, then x+ y =y +xand xy = yx.

If w, x and y are real numbers,then w(x+y) = wx + wy.

There exist two special numbers z (or 0) and v (or 1) called the zero and the unit
that satisfy x + z = x and xu = x for all real numbers x.

If x is any real number, there is another real number denoted by —x and called
the negative or additive inverse of x that satisfies x + —x = z, where z is the zero.

If x is any real number except zero, there is another real number x—', called the
reciprocal or multiplicative inverse of x, that satisfies x x ~'= u, where v is the unit.

If xand y are real numbers, then eitherx<yorx=yorx >y

Ifx<y thenx+w<y+w ifx<yandw>z(wherezis zero) then xw< yw.

Suppose £ is a set of real numbers that has an upper bound, that is, suppose

there is some real number x such that y < x whenever y is a member of the set £,
Then £ has a least upper bound, that is, an upper bound x that is less than or
equal to every other upper bound for £.

ELEVEN AXIOMS are customarily used to define the real-number line, which is known
formally as a complete ordered field. The first seven axioms define a field ; the first 10 define
an ordered field. The symbol > means “greater than”; the symbol < means “less than.”
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acteristic properties of infinitesimals,
namely that any multiple of an infini-
tesimal is still an infinitesimal. For in-
stance, the infinitesimal dx used in cal-
culus is smaller than every ordinary
positive real number, and so is every
multiple m(dx) for any positive integer
m. Accordingly the set M of all multi-
ples of the infinitesimal dx has many up-
per bounds (any ordinary positive real
number will do), but it has no least up-
per bound, since for any given number
b that is an upper bound for M the
smaller number b — dx will also be an
upper bound for M. Thus M fails to sat-
isfy the final axiom for the real-number
system, the “completeness” axiom.
Hence at the same time that geome-
ters were being forced to change their
criterion of truth from self-evidence to
consistency, analysts were discovering
that the supposedly self-evident axioms
for the calculus of infinitesimals were
inconsistent. What was to be done? The
answer, developed principally by Au-
gustin Cauchy and Karl Weierstrass,
was to abandon the infinitesimals but
keep the calculus (whence our present
abbreviated name for the subject).
Cauchy reformulated the foundations of
calculus by substituting the concept of a
limit for that of an infinitesimal; his
method was a return to the Aristotelian
concept of the potential infinite as the
only secure basis for reasoning.
Weierstrass extended Cauchy’s work
by defining the concept of a limit in
terms of the more primitive concept of
real numbers. The Cauchy-Weierstrass
approach to calculus, now widely taught,
placed the epistemological foundation
of calculus squarely on the shoulders of
the real-number line. Although many
users of calculus continue to prefer the
intuitive language of infinitesimals, vir-

tually all 20th-century mathematicians
have adopted the definitions and con-
cepts of Cauchy and Weierstrass.

Within the past decade, however,
Abraham Robinson of Yale University
developed a consistent mathematical
theory of infinitesimals. This new theory,
called “nonstandard analysis,” resusci-
tated the discredited ideas of the actual
infinite and actual infinitesimal and
showed how much of modern mathe-
matics could be consistently translated
into a language of infinities and infini-
tesimals. In particular Robinson’s new
theory created a significant alternative
to the mathematician’s real-number line
(alias the complete ordered field), an
alternative that contained infinitesimals
and on which calculus could be done in
the spirit of Newton and Leibniz.

Thus by the end of the 196¢’s there
were available on two different fronts
several pretenders to what can justifiably
be called the throne of mathematics: the
real-number line. Although the techni-
cal construction of each of these alterna-
tives is long and complex, there is a com-
paratively simple approach to both Co-
hen’s and Robinson’s models through the
theory of probability; I shall now out-
line this approach, emphasizing its spirit
more than its detail.

Before beginning this task it would be
well to consider a somewhat subtle
philosophical issue. If we were attempt-
ing to prove the real-number line defec-
tive and to replace it with a better mod-
el, we would have to take great care to
avoid assuming the existence of the real-
number line while constructing the al-
ternative. This, however, is not what we
are trying to do. We are, rather, trying
to establish the existence of several dif-
ferent models of the real-number line,

=

. Suppose Sis the two-point set {0,1}.

aninverse.

o

2. Then each function f:S—R, which causes each point of S to be assigned a
value in the real-number set R can be defined by giving two real numbers,
namely the value of fat 0 and the value of fat 1.

3. The identity element v belonging to the trial set R is given by u(0) =
and the zero element z belonging to R” is given by z(0)= z(1) = 0.

4. Now the function h belonging to R°® defined by h(0) =0 and A(1) =1
failsto satisfy Axiom No. 7 since h is not equal to z and yet h does not have

. Therefore the set R® is not an adequate model of the real-number line.

i) =1

FAILURE OF R? (the set of all functions from some arbitrary set S to the real-number set
R) to satisfy Axiom No. 7, the “multiplicative inverse” axiom, is demonstrated in this ex-
ample. For the purpose of the demonstration S is assumed to be the two-point set {(,11.
The conclusion is that RY falls far short of being a model for the realmumber line.
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including the ordinary Platonic ideal of
the complete ordered field. Therefore in
constructing our new models we shall
feel free to use the old one. (This proc-
ess is quite analogous to the one fol-
lowed in the construction of the non-
Euclidean geometries, where the new
models are defined within the standard
Euclidean space.)

Let us now proceed to construct two
specific models for the real-number sys-
tem: one that will contain infinitesimal
elements and another that will contain
a set that violates Cantor’s continuum
hypothesis. Our method will be to con-
struct a general model and then to ob-
tain from it the two special models. The
symbol R will be used throughout the
discussion to stand for the ordinary real-
number line; when we write x ¢ R, we
mean that x belongs to, or is a member
of, the set R, that is, x is a real number.

The cbjects in our new models will be
real-valued functions f defined on some
set S. In other words, f is a rule that as-
signs to each point s belonging to the
set S a real number f(s) belonging to
the real-number set R. The symbolism
f : S — R expresses the fact that f causes
each point of S to be assigned a value
in R; the expression is usually read as “f
maps S to R” or, more formally, as “f is
a function from S to R.” We shall use
the symbol R® to denote the set of all
functions from S to R.

In order for us to see how RS can be-
gin to resemble the real-number system,
we must understand how to do addition
and multiplication. Since the elements
of RS are functions (that is, rules), one
must in effect define the addition and
multiplication of rules. If f and g are
functions in RS, we shall define f 4 g to
be the new function in RS that assigns to
each point s belonging to the set S the
real number f(s) + g(s); in pure symbols,
(f + g)(s) = f(s) + g(s). Multiplication is
similar: (fg)(s) = f(s)g(s). It is quite easy
to show that the functions in RS satisfy
the first six axioms of a complete ordered
field, listed in the illustration on the pre-
ceding page. A simple example, how-
ever, suffices to demonstrate that Axiom
No. 7, the “multiplicative inverse” axi-
om, is not satisfied by this set [see illus-
tration at left]. Thus RS fails even to be a
field and consequently falls far short of
being a model for the real-number line.

To correct this situation we shall en-
gage in a bit of mathematical gerryman-
dering. Axiom No. 7 does not say that
all elements of RS must have inverses;
it only says that if it is true that f does
not equal zero, then f must have an in-
verse. Accordingly if we have some func-
tions f (that is, elements of RS) that do



not have inverses, we shall simply re-
define truth so that for them the state-
ment “f equals zero” will be true. More
precisely, we shall substitute for the ab-
solute notion of truth the more flexible
concept of probable truth. In order to
show how this can be carried out, I must
digress for a while to discuss some defi-
nitions and examples from elementary

probability.

B/;[athemutical probability is based on

a special function that assigns to
each subset A of a given set Q a positive
real number that represents the proba-
bility that a point selected “at random”
from the set Q will actually be in A. This
function is called a “probability mea-
sure” on the set Q, and we shall denote
it by m. The function m can be thought
of as a rule that measures the size of
sets, and the real number m(A) can be
thought of as the measure, or size, of the
set A. Since the probability is 1 that a
point selected at random from Q will be
in Q, the measure of Q must be 1. In ad-
dition we require of m only that it satis-
fy the (self-evident?) maxim that the
whole is equal to the sum of its parts: if
the whole set A is broken down into
finitely or infinitely many distinct parts
Ay, Ao, Ay, oo, thenm(A) = m(Ay) +
m(Ay) + ...+ m(A,) + ....

Before applying this measure to our
set RS I shall give two important exam-
ples of measures that will be used as the
basis for our two different models for
the real-number line. First, suppose Q
is the set N of positive integers: in sym-
bols, N = { 1, 2,3, ...}. We shall de-
fine on N a very crude measure by classi-
fying subsets of N as small if they are
finite and large if they are cofinite, that
is, if their complement (the set of posi-
tive integers not in them) is finite. Any
small set will be given measure 0 and
any large set will be given measure 1.

Now, the measure on N as just defined
fails to measure sets such as the set of
even integers, since neither it nor its
complement is finite. The problem is
that the set of even integers is neither
small nor large but somehow in be-
tween. We can correct this deficiency in
our measure m by systematically classi-
fying each intermediate sct as either
small or large on an arbitrary basis, sub-
ject only to the constraints of consisten-
cy: each subset of a small set must be
small; each set that contains a set pre-
viously classified as large must be large;
the complement of a small set must be
large, and vice versa. Once this has been
done our measure will assign a value of
either 0 or 1 to every subset of N; we
shall call m the cofinite measure on N.

For our second example let us take for
the set Q the unit interval I that consists
of all real numbers between 0 and 1; in
symbols, I ={xe¢R|0 L x £ 1}. We
build up a measure m on the subsets of I
by first assigning to each interval its
length. Then for a subset A that consists
of pieces that are intervals we use the
maxim that the whole is equal to the
sum of its parts to say that the measure
of A is the sum of the lengths of its
pieces. Continuing in this fashion, we
can build a probability measure on I
that is known as the Lebesgue measure
(named after the 20th-century French
mathematician Henri Lebesgue).

Since each point x belonging to the
set I is considered to be an interval of
length 0, the Lebesgue measure m of
each point x is 0. According to the con-
struction just described, each finite set
will also have measure 0, as will each
infinite set that can be written as a se-
quence Xy, X, X3, ... (since the measure
of the entire sequence is just the sum of
the measures of each of its points). Since
the set of rational numbers in I can be
listed in a sequence (1, 1/2, 1/3, 2/3,
1/4, 2/4, 3/4, ...) it too must have
measure 0, even though it appears to be
a very large set. In other words, the
chances are nil that a number selected
at random from the unit interval will be
rational.

This minor paradox leads directly to
a major paradox concerning the Le-
besgue measure. If T select a number at
random from the unit interval, the prob-
ability is 0 that the number so chosen
will equal some particular previously
selected number; intuitively there are
just too many numbers in the unit inter-
val to choose from. Yet the probability
that I shall pick some number in the unit
interval is 1. Thus in this case it appears
that the whole is not equal to the sum
of its parts! This dilemma has plagued
various philosophers throughout history;
how can something of positive weight be
made up of parts that each have zero
weight?

The trouble is that there are too many
points in the unit interval. Cantor called
countable those infinite sets that can be
written as a sequence xq, Xs, X3, ..., ONE
point for each integer; other infinite sets
are called uncountable. The principle
that the whole is equal to the sum of its
parts applies only if the collection of
parts is finite or countable. Hence the
measure of the set of rational numbers
given above is 0 because the set of ra-
tionals can be written as a sequence in
which each term has measure 0. Similar
reasoning does not allow us to conclude
that the measure of the interval I is 0

because I cannot be written as a se-
quence. (The fact that the unit interval
I is an uncountable set is actually a very
famous theorem of Cantor’s.) It follows
that R, which contains I, is also uncount-

able.

We now return to our original task of
building models for the real-num-
ber line. We had constructed the set R®
of functions from S to R and showed
how this set failed to satisfy Axiom No.
7 for complete ordered fields. In order
to correct this defect in RS we shall now
assume that S is equipped with a prob-
ability measure m, so that we shall be
able to measure the size of subsets of S.

The most primitive statement that
can be made concerning two functions
in R is that they are equal (or unequal).
If f and g are given, then “f equals g~ is
either true or false. It is true if and only
if f(x) equals g(x) for all points x belong-
ing to the real-number set R. In other
words, f equals g if and only if f and g
express the same rule. If there is in R so
much as one point y where f(y) does not
equal g(y), then we are forced to say
that the function f does not equal the
function g—even if they agree at every
other point of R. Logicians call the terms
“true” and “false” truth values. In tra-
ditional logic (which we have used
throughout this discussion) sentences
have only two truth values: true or false.

We propose to change this tradition
by assigning to sentences not just one
of two possible truth values but a real
number that expresses the probability of
truth; this number may be 0 (if the sen-
tence has no chance of being true) or 1
(if the sentence is certain to be true) or
any number in between. We can accom-
plish this coup d’état on R¥ because we
now have a means of measuring the size
or probability of subsets of S. In par-
ticular we shall say that the probability
that “f equals g” is true is the measure
of the set of points in S where it really
is true, that is, the measure of the set of
all points s belonging to S that satisfy
the requirement that f(s) equal g(s). If
we denote this probability truth value
of “f equals g” by |f = g|, we have |f =
gl=m({seS|fls) = g(s)})-

Of course, there are a lot of sentences
about RS that are far more complicated
than the primitive sentences of the form
“f equals g.” All the more complex sen-
tences, however, can be built up from a
few primitive ones, which are called,
naturally enough, atomic sentences.
What we have to do to make our revolu-
tion in truth values succeed is, begin-
ning with the atomic sentences, to sys-
tematically work our way through the
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S—[5]

CONSIDERABLE SIMILARITY exists between the rules that govern the use in logic of
the connectives “and,” “or” and “not,” and the operations on sets of, respectively, inter-
section (a), union (b) and complementation (c). This similarity (in fact, a mathematical
isomorphism) was discovered by the 19th-century English mathematician George Boole,
and the abstract system based on it is now called Boolean algebra. The symbol [2] stands
for the set where the sentence X is true; [ signifies the set where the sentence II is true.
The intersection of these two sets, symbolized [2] n [II], is the set where the sentence
“% and II” is true; the union of these two sets, [Z] U [II], is the set where “3 or I1” is
true. In the example of complementation S — [X] signifies the set where “not £” is true.
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entire catalogue of sentences about RS
and determine how to assign a probabil-
ity to each sentence in such a way that
it represents the measure of the set of
points in S where the sentence is true.

he basic idea behind this scheme was

outlined more than 100 years ago
by the English mathematician George
Boole, who noticed that there was a con-
siderable similarity (in fact, a mathe-
matical isomorphism) between the rules
that govern the use in logic of the con-
nectives “and,” “or” and “not,” and the
operations on sets of, respectively, in-
tersection, union and complementation
[see illustration at left]. The abstract
mathematical system that represents this
structure is now called a Boolean alge-
bra. To see how Boole’s system can be
used to solve our problem let us con-
sider a simple example.

If = is a sentence about RS, we shall
denote by [Z] the set of all points in
S where X is true, and by |Z| the mea-
sure of [2]. Thus [2| = m([Z]) is the
probability truth value of the sentence
S. If II is another sentence about RS,
then one of the Boolean relationships
is that [2 and II]=[=] N [II]. In
words, the set of points in S where both
% and IT are true is the intersection (de-
noted by M) of the set where = is true
with the set where 11 is true.

Perhaps the only detail in our plan (to
extend the probability truth values from
atomic sentences to all sentences) that
requires special comment is the treat-
ment of the quantifiers V (meaning “for
all”’) and 3 (“there exists”). The sen-
tence “VsII(s),” which we read as “For
all points s belonging to the set S, the
sentence II(s) is true,” means that TI(sy)
and II(s,) and ... (ad infinitum) are all
true. In other words, V is an infinite
repetition of “and.” Thus it is appropri-
ate that the set operation that corre-
sponds to VY is the infinite intersection,
since the ordinary (finite) intersection
corresponds to “and.” Similarly, 3 rep-
resents an infinite “or,” so that its corre-
sponding set operation is the infinite
union.

In summary, then, although we have
by no means discussed all the relevant
detail, it is possible by means of the
Boolean translation to determine for
each sentence = about R a subset [X]
of S on which = is true. The measure of
this set is the probability truth value of
3, denoted by |2|. A sentence = will be
considered valid if and only if |E| =
in other words, = is valid if and only if
the measure of the set where = fails to
hold is 0, so that there is “no chance” of
failure. The examples of measures given



above reveal the essential distinction be-
tween the concept of truth in the two-
valued logic and the concept of validity
in the probability-valued logic; for = to
be true it must hold without exception
for all points s belonging to the set S,
but it remains valid even if it fails to
hold on a fairly large subset, provided
only that the measure of the exceptional
set is 0.

Let us denote by R%/m the set R®
with the new concept of validity as de-
termined by the measure m. We have
seen that under the former notion of
truth RS did not satisfy the axioms for
a complete ordered field. But RS/m will
always be an ordered field because, on
the basis of the concept of validity, it
will always satisfy axioms No. 1 through
No. 10. Furthermore, for certain choices
of S and m it will also satisfy the com-
pletion axiom, so that in these cases
R5/m will be a complete ordered field.

Suppose S is the set of positive in-
tegers N with the cofinite measure m
defined above in our first example of
measures; m assigns to finite sets the
value 0, to cofinite sets the value 1 and
to intermediate sets either 0 or 1 accord-
ing to some arbitrary but consistent pat-
tern. In this case we can picture each
function f belonging to RS as a sequence
fis f2» f3, - - » where for each integer i be-
longing to N =S, f, is the real number
that f assigns to i; f; is just what we usu-
ally call (i). For example, the identity
function u is the sequence 1, 1, 1, 1, ...,
since u; = u(i) = 1 for each i belonging
to IN=48:

Given S and m as defined above,
BS/m contains both infinitesimals and
infinite elements. The function f de-
fined by the sequence 1, 1/2, 1/3, 1/4,

. is an infinitesimal, since if we multi-
ply it by any integer n, the resulting se-
quence n, n/2, n/3, n/4, ...
than the identity element u except for
the finite set {n, n/2, n/3, ..., n/(n —
1), n/n}, which has measure 0. In other
words, if TI(n) is the sentence “nf is less
than u,” then |II(n)| = 1 because {i ¢ N|
nf(i) < u(i)} has measure 1. Thus
\Vn]l(n)[ =1, which is to say that for
every n, nf is less than u. Thus f is an
infinitesimal since only an infinitesimal
could have this property.

For a different perspective let us look
at the multiplicative inverse of f; f must
have an inverse since R5/m is a field.
In reality the function g defined by the
sequence 1, 2, 3, 4, ... is the inverse of
f since, clearly, gf = u. Just as f is an
infinitesimal, so g must be infinite. In
fact, if n denotes the constant function
n, n, n, ..., then '|g = m({i|g; >
ni}) =m({ ili > n}) — 1, since the set

is smaller

in question is cofinite. Thus in RS/m it
is valid to say that g is greater than n
for all n. This is just what we mean when
we say that g is infinite.

We have now achieved the first of
our two goals: the description of a math-
ematically consistent model of the real
numbers that contains infinitesimals.
The other type of model, in which Can-
tor’s continuum hypothesis fails, re-
(uires some more work. First, however,
I shall explain Cantor’s hypothesis.

Cantor developed his theory of cardi-

nal numbers by defining two sets as
being of equal size (or of the same “car-
dinality”) if there is some function, or
rule, that establishes a one-to-one cor-
respondence between them. All finite
sets with the same number of elements
have the same cardinality, and all in-
finite sequences have the same cardi-
nality as the set of integers. (The sets in
this latter category are those that we
have called countable.) Cantor’s great
achievement was to assign sizes (cardi-
nal numbers) even to the uncountable
sets. In particular he identified a class
of sets of the same cardinality as the set
of real numbers R; he called the cardi-
nal number of sets in this class ¢, for
continuum. Sets of size ¢ are those that
can be put into one-to-one correspon-
dence with the real numbers.

Cantor’s continuum hypothesis is
simply this: Every infinite set of real
numbers is either countable or of car-
dinality ¢. There are no sets of interme-
diate size. This hypothesis was formu-
lated (but not proved) by Cantor late in
the 19th century, and it was listed in
1900 by David Hilbert as the first of
his celebrated 23 problems for 20th-cen-
tury mathematics. We shall now out-
line a version of Cohen’s 1963 model
that shows conclusively that Cantor’s
continuum hypothesis could never be
proved from the ordinary axioms of set
theory and real numbers.

This new model, developed principal-
ly by Dana S. Scott of Princeton Univer-
sity, involves the use of a rather compli-
cated set S in the general model RS/m.
We first have to find a very large set T,
a set whose cardinality is bigger than c,
the cardinal number of R. The proof
that such sets exist is another of Cantor’s
significant contributions to mathematics.
An example of such a set is what is
called the power set of R: the set that
consists of all subsets of R. Cantor’s
proof that the cardinal number of this
set is indeed bigger than c is essentially
the same as his proof that R, or equiva-
lently the unit interval I, is strictly big-
ger than the set of integers.

Let I denote the unit interval (I =
fxeR|0 L x<1}) and let T be a
set whose cardinal number is bigger
than ¢. Then we define S to be the set
I ={f:T—>1}. The points of S are
functions from T to I. The measure on
S, whose details need not concern us,
is a rather natural extension to I” of
the Lebesgue measure on I described
above. Our new model for the real-num-
ber line is RS/m, where S equals I7.

The fact that the points of S are real-
ly functions can be the source of some
conceptual difficulty if we confuse the
functions in S = I? with those in RS.
Mathematicians avoid this confusion by
emphasizing in their minds that S is a set
of functions rather than a set of functions.
We put up with this double meaning be-
cause the entire key to Scott’s model is
a deliberate pun formed by interchang-
ing the role of functions and points.

To be precise, we observe that each
point ¢ belonging to the set T can be
thought of as a function in RS that as-
signs to each function f belonging to
I = S the real number f(t) belonging to
1. If weAcall the function ¢ by the name
t, then ¢(f) equals f(t) whenever f is a
member of S. Now our problem is to find
a subset of RS that is uncountable, yet
not as large as RS, But just how large is
RS? Since it contains a t for each t be-
longing to T, the cardinality of RS must
be at least as large as that of T, but T
was selected so that its cardinality was
larger than c. Hence the cardinality of
RS, our new real-number line, is greater
than ¢, the cardinality of the old real-
number line R.

Since the new real-number line is so
very much bigger than the old one, it
will be much easier to find in the new
line an uncountable set that is not of the
same cardinality as the entire line. All we
have to do is select a subset P of T with
the property that the cardinality of P
is c. (If we had been thinking of T' as the
power set of R, then we could take R
itself for P.) Then the set P that consists
of all the functions ¢ for t belonging to P
is a subset of RS of size ¢. Thus P is un-
countable, yet it is not as large as R5.

This completes our program of con-
structing new models of the real-number
line. To summarize briefly, each model
consists of functions from some set S to
the ordinary real-number line R. The
two-valued true-false logic of the old
system is replaced with a more flexible
probability—valued logic determined by
some measure on the set S. Validity in
the new model means truth with prob-
ability 1, a definition that grants excep-
tions to sets of measure 0. The particu-
lar models that contain infinitesimals or
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counterexamples to the continuum hy-
pothesis are then formed by selecting
special sets S with special probability
measures ni.

In the preceding development of the
two new models of the real-number
line I not only omitted all proofs and
technical detail but I also failed to men-
tion a most important distinction be-
tween these two models: the Cohen-
Scott model (where S equals I") is a
complete ordered field, whereas the
Robinson model (where S equals N) is
just an ordered field. The fact that Rob-
inson’s model fails to be complete should
come as no surprise, for we did see that
any real-number line that contained in-
finitesimals could not satisfy Axiom No.
11. To complete the discussion of these
models I should explain two things: Why
should the two models behave different-
ly with respect to Axiom No. 11, and by
what right can we call an object (such
as Robinson’s model) that fails to satisfy
Axiom No. 11 a real-number line?

The answers to both questions de-
pend on a distinction that logicians make
between what are called first-order sen-
tences and higher-order sentences. In-
tuitively a first-order sentence about the
real numbers is one that makes generali-
zations only about real numbers and not
about such higher abstractions as func-
tions or sets of real numbers; in techni-
cal terms a first-order sentence is one
in which the quantifiers (V and 3) are

limited to real numbers. All the axioms
of a complete ordered field are first-
order sentences except for the comple-
tion axiom (No. 11), which talks about a
property of all subsets.

Now, the models of nonstandard
analysis (such as the first of our two ex-
amples) have the property that every
first-order sentence that is true about R
is true about them, and conversely. In
other words, it is impossible to distin-
guish between these new models and R
by the use of first-order sentences. Since
a large part of calculus can be expressed
in first-order sentences, it is quite literal-
ly true that for most practical purposes
the nonstandard real-number line is the
same as the ordinary real-number line.

The effort required to show that the
completeness axiom is satisfied by some
particular model RS/m is decidedly
more strenuous than any of the ideas dis-
cussed above. Not only is the axiom it-
self more difficult to verify, but also be-
fore we can even consider it we must
work quite hard to extend the machinery
of assigning probability truth values
from first-order sentences to higher-
order sentences. This extra effort is also
required to prove that in our second ex-
ample the probability is zero that the
continuum hypothesis is true—since the
continuum hypothesis is also a higher-
order sentence.

There is a striking analogy between
the creation of these new models for the
real-number line and the development of

R = Real-number line

f:S—R = A function f

T = Asentence about R

also written m(fZ )
= Another sentence about R’

= Intersection of two sets

n
m
u = Union of two sets
¥ = "Eorall*

3

= "There exists"

e = "Belongs to"; "isamember of" (asin x € R. thatis, x belongs
to. or is @ member of, the set of real numbers R, hence x is areal number)

that causes each point of the set S to be
assigned a value in the real-number set R

R° = Thesetof all functions from StoR

m(A) = The probability measure of the set A

[Z] = Thesetofall pointsin S where Z istrue

|Z| = The truth value of the sentence X, that is, the probability measure of [Z];

¢ = Cantor's symbol for the cardinal number of the continuum

GLOSSARY OF SYMBOLS used in this article is provided in this illustration. The symbol

¢, used by Georg Cantor to signify continuum, denotes the cardinal number of sets in the
class of infinite, uncountable sets of the same cardinality, or size, as the set of real numbers R.
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quantum mechanics. The most common
derivation of quantum mechanics from
classical mechanics is accomplished by
substituting in the classical theory a wave
packet or probability cloud for each clas-
sical particle. In the quantum model the
location of the particle in the cloud is
given by a probability distribution and
the particle itself becomes a random
variable.

The new models for the real-number
line that were described above are
formed in just this way. We substituted
for the ordinary real numbers certain
real-valued functions defined on a prob-
ability space. These functions are pre-
cisely what statisticians and probability
theorists call random variables. The sub-
stitution of random variables for real
numbers was accompanied by a corre-
sponding change from a two-valued
logic to a more general scheme in which
the truth value of a statement about the
real numbers is expressed by a probabil-
ity. This transition from two-valued to
probability-valued logic also occurs in
the derivation of quantum mechanics
from classical mechanics, since questions
about the state of the mechanical sys-
tem that in the classical framework
could be answered by “Yes” or “No” can
in quantum theory only be answered
with a probability.

One of the best-known consequences
of quantum mechanics is Werner Hei-
senberg’s uncertainty principle, which
places an absolute limit on the amount
of information that can be obtained by
a physicist through the process of ob-
serving a particle. Heisenberg’s princi-
ple is derived by a process of self-reflec-
tion in which the observer analyses the
effect that his actions have on the system
he is observing.

In mathematics, analogously, one de-
duces from the action of writing down
axioms and theorems (which is to the
mathematician what experimental ob-
servation is to the physicist) a limitation
on the amount of information that can
be derived from a set of axioms (in the
Godel-Cohen case) and a limitation on
the capability of axiom systems to de-
scribe models uniquely (in Robinson’s
theory). The first of these two limita-
tions is the substance of Godel’s unde-
cidability theorem, whereas the second
is one version of a more general result
known in mathematical logic as the
Lowenheim-Skolem theorem. In differ-
ent ways each limitation expresses a
basic uncertainty in mathematics.

It is not surprising that the introduction
of “uncertainty” results in mathemat-
ics was accompanied by fundamental



disagreement about their significance,
just as Heisenberg’s uncertainty princi-
ple precipitated among physicists a ma-
jor dispute about its ultimate significance.
Most physicists tend to agree with Niels
Bohr that the uncertainty in quantum
mechanics is a fundamental law of na-
ture. Some, however, support the posi-
tion of Albert Einstein, who argued that
the uncertainty principle merely express-
es a limitation on the present conceptual
formulation of physics.

These two opposite poles in physics
reflect approximately the positions of
the Formalist and the Platonist in math-
ematics. The Formalist believes that
mathematics is pure form, and since the
“uncertainty” theorems of mathematics
limit the scope and power of the formal-
ism with which mathematics is con-
cerned, then they must forever limit
mathematics itself. For a Formalist the
question of whether the “real” real-num-
ber line satisfies the continuum hypothe-
sis or contains infinitesimals is as mean-
ingless as is, for a physicist such as Bohr,
the question of whether or not an elec-
tron “really” has an exact simultaneous
position and velocity. Robinson himself
reflects this position when he writes (in
a paper titled “Formalism 647) that “any
mention of infinite totalities is literally
meaningless.”

In contrast, the Platonists, who count
among their number even Godel him-
self, believe (like Einstein) that the un-
decidability in mathematics is a state-
ment about the inherent limitations of
our present axiomatic mode of investiga-
tion and not about the mathematical ob-
jects themselves. Godel has argued that
there is no reason to believe more in the
objective existence of a physical object
such as an electron than in the objective
existence of a mathematical object such
as the real-number line. And one who
believes that the real-number line has
an existence in a Platonic universe can
hardly avoid wondering about which of
our several models is the more accurate
description of this Platonic continuum.

It is ironic that Robinson, the re-crea-
tor of infinitesimals, does not believe
they really exist, whereas Gédel, the
prophet of undecidability, believes in a
Platonic universe in which the proper-
ties of mathematical objects are visible
for those who have the eyes to see. Per-
haps these men are merely reflecting an
intense modesty about the significance
of their own achievements. It seems
unlikely, however, that within the next
few generations mathematicians will be
able to agree on whether every math-
ematical statement that is true is also
knowable.
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