WHAT IS A SHEAF?

J. ARTHUR SEEBACH, Jr., LINDA A. SEEBACH, ano LYNN A. STEEN,
St. Olaf College

Ever since Jean Leray and Henri Cartan in 1950 formally introduced the
concept of a sheaf, the various examples and applications of sheaves have come
to play a major role in such diverse fields as several complex variables, algebraic
geometry, and differential and algebraic topology. Yet nearly all monographs
which use or introduce sheaves assume the sophistication of graduate level
algebraic topology. So it is very difficult for an undergraduate to acquire from
the available literature a real understanding of sheaves and their applications.
It is the purpose of this article to introduce the theory of sheaves at an ele-
mentary level with the hope that the interested reader will then be able to
approach any of the standard treatises (e.g., [2], [3], [6], [10], or [11]) with
significant insight.

Our avenue of approach to the theory of sheaves will be through examples
drawn from three major areas of mathematics: from analysis, the sheaf of germs
of holomorphic functions; from algebra, the sheaf of local rings; and from geome-
try, the sheaf of differential forms. We will develop each of these particular
sheaves in considerable detail, for the different perspectives thus revealed will
more readily make transparent the subsequent discussion of the general theory
of sheaves.

1. The sheaf of germs of holomorphic functions. A kolomorphic (or analytic)
function on an open subset D of complex n-space C» is defined to be a complex
valued function on D which has a local power series representation at each
point of D. Osgood’s lemma [6, p. 2] asserts that a continuous function on
DC C»is holomorphic if and only if it is holomorphic in each variable separately.

A very important property of holomorphic functions is that they are
uniquely determined by their behavior on open sets: if f and g are holomorphic
on a domain D (a domain is a connected open set), and if f equals g on a non-
empty open subset of D, then f equals g on all of D. To see this, we need only
observe that the largest open subset of D on which f=g is also closed (relative
to D), since the partial derivatives which determine the power series expansion
are continuous. Since D is connected, this set must be D.

Now if 2& C», we say that f is holomorphic at z if it is holomorphic on some
neighborhood of 2. The collection 4, of functions holomorphic at z forms an
algebra over the field of complex numbers in which the operations of sum and
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product involve intersection of domain: if f: U—C and g:V—C, then f+g:
UNV—C and fg: UNV—C. We let I, be the ideal in 4, consisting of those
functions in 4, which vanish identically on some neighborhood of z.

The algebra of germs of holomorphic funciions at z is then defined to be the
quotient ring (algebra) A4./1,, and is denoted by O,. So a germ of a holomorphic
function is an element f+1, of Q,, where f is holomorphic at z. We will usually
denote this germ by [f],. Following the usual practice, we shall often identify, or
fail to distinguish between, two functions which belong to the same germ. This
sloppiness is somewhat justified by the uniqueness property stated above, for
two functions which belong to the same germ and are defined on the same do-
main D must differ by a function in I,, which means that they agree on some
neighborhood of 2, and thus must agree on D.

We may now define the stalk space (espace étalé) of germs of holomorphic
functions to be the set S= {(z,[f],)[ f is holomorphic at 2& C"} together with
the natural mapping p from S to C» defined by p((z, [f].)) =2. We call p=1(z) the
stalk at the point z&C»; it is simply a copy of O,, the algebra of germs of holo-
morphic functions at z. The stalk space S is thus the disjoint union of the stalks.
Intuitively, we shall picture S as a space of interpenetrating sheets lying over
Cr, with p projecting .S onto C» (Fig. 1).

(z:lf]’)
1

(Z,[g]z)

FiG. 1

To make this intuitive picture more precise, we lift the topology of C» back
to S, to make S into a topological space. For each open set U in C* and each
function f which is holomorphic on U, we define V(f, U) = { (z, [f].) I zEU}. Each
such V(f, U) is contained in S, and the collection of all such sets covers S, for
if (2, [fo]:) €S, fo must be holomorphic on some neighborhood Uj of 2z and(z,
[fo].) € V(fs, Uy). Furthermore, V(fi, Uy)N\V(fa, Uz) = V(f, U) where U= {zE U,
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f\UzI [fil.= [fz],} and f=f1|z;=f2|u. Thus the sets V(f, U) form a basis for a
topology on S, and relative to this topology, the projection p is a local homeo-
morphism. That is, for each basis neighborhood V(f, U) in S, the one-to-one map
p,vu,g, is a homeomorphism onto U. For if we let p;,v denote pIVU,U), and if N
is an open subset of U, then p;y(N)=V(f, N) which is open in S, while if
V({f, U)CV(f, U), then p;u(V(f, U")) = U’. The topology on S is uniquely deter-
mined by the requirement that the projection p be a local homeomorphism.

This topological space S, together with the local homeomorphism p which
projects S onto C», is called the sheaf of germs of holomorphic functions over the
base space Cr. As the agricultural terminology implies, we think of the sheaf as
a bundle of stalks (Fig. 2), each with a full head of germs (or, if you wish, seeds,
or grain).

FiG. 2

We can show that the stalk space .S is Hausdorff as follows: points of S may
differ either because they are on different stalks, or because they are on different
levels of the same stalk. In the first case, the projections of two points p, ¢&S
differ in C=; so, since C» is Hausdorff, there are disjoint neighborhoods of p(p)
and p(g) which may be lifted back to S. To be specific, if p = (z, [f].) and ¢= (w,
[g]w) where z5w, then there exist disjoint open neighborhoods U,, U, of z and
w respectively and on them holomorphic functions f& [f], and g& [g]., respec-
tively, so that V(f, U,) and V(g, U,) are disjoint neighborhoods of $ and q.

The second case is a bit more complex, since it depends on the uniqueness
property of holomorphic functions. If p=(z, [f].) and ¢=(z, [g].) are different
points on the same stalk, then [f].5[g].; so there must exist different holo-
morphic functions f& [f]. and g& [g]. which are both defined on some neighbor-
hood U of 2. We claim that V(f, U) and V(g, U) are then disjoint neighbor-
hoods of p and g, for if (w, [2].) EV(f, UYNV(g, U), then wE U and [flo=[k]»
= [g]o. But as we observed above, the uniqueness property of holomorphic
functions implies that the two functions f and g with the same domain U which
belong to the same germ [k ], must be identical on U. But they are not identical
on U, since [f].#[gl.. So V(f, UNV(g, U)=¢, and thus S is Hausdorff.
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There is still another consequence of the uniqueness property of holomorphic
functions that can be used to further illuminate the sheaf of germs of holo-
morphic functions. The uniqueness property may be roughly interpreted as
saying that the global behavior of a holomorphic function is uniquely deter-
mined by its behavior on any open set. This makes meaningful the vague ques-
tion of identifying the largest domain to which a given holomorphic function
can be extended. In the classical study of analytic functions this question led
to the concept of a Riemann surface, or more generally to complex analytic
manifolds.

-
wzomy "t

FiG. 3

A manifold is, essentially, a topological space which is locally homeomorphic
to complex Euclidean n-space C». To be more precise, we will call a topological
space X locally Euclidean (of dimension %) if every x €X is contained in an open
set U, which is homeomorphic under a mapping . to some subset of Cr, where,
furthermore, the coordinate patches U, are coherent in the sense that for each
x,yEX, mom; ! is a homeomorphism between m, (U,MN\U,) and 7.(U,MNU,). The
first half of this definition guarantees that X is locally like C», while the second
condition requires that the locally Euclidean patches overlap so as to form a
coherent Euclidean structure on all of X. We shall call each pair (U, 7.) a local
coordinate system, since m; ! lifts the coordinate system of C» back to U (Fig. 3).

Since the same topological space may be covered by several different col-
lections of coordinate systems (U,, ), and since we do not wish to distinguish
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between two covers which provide essentially the same coordinate structure on
X, we define a manifold to be a locally Euclidean topological space in which the
collection of coordinate systems (U,, ;) is maximal with respect to the defining
properties for a locally Euclidean space. Since each locally Euclidean space
generates a unique manifold, we shall often refer to locally Euclidean spaces as
manifolds even if the collection of local coordinate systems is not maximal. Other
types of manifolds may be produced by projecting to real Euclidean space R»
instead of to C» or by requiring that the homeomorphisms m, o ;! be analytic
or C* (infinitely differentiable); such manifolds are naturally called analytic
manifolds or C* manifolds.

A function f:X—Y from one analytic manifold*to another is called holo-
morphic if for each x and y, 7y o f o w571 is holomorphic on its domain, which is
m(U.Nf~1(U,)). In the special case, where Y= C1, the identity map ¢: Y—C!
is used to define the local coordinate systems. So a holomorphic function f from
the analytic manifold X to C?!is characterized by the property that fow; ! is
holomorphic on 7, (Uy).

It should be clear from this description that the sheaf of germs of holo-
morphic functions can be regarded as an analytic manifold, using the projection
p to define the local coordinate systems. It is a particularly important manifold,
since on it we can define what is known as the universal holomorphic function.
This is the mapping F:S—C defined by F((z, [f].)) =f(z). F is clearly holo-
morphic since for each local coordinate system (U, pl v), we have Fo (pl )t
=f | o) where f:p(U)—Cis holomorphic.

f
F1G. 4

Fis universal in the sense that the behavior of all holomorphic functions on
C» is subsumed in that of F. In particular, whenever f:D—C is holomorphic
(where D is a domain in C*), we can factor f through the sheaf .S as follows:
there exists a unique function f: D—S such that F o f=f. Clearly f is defined by
f(z) = (2, [f].), so the associated diagram (Fig. 4) is commutative; f is continuous
since f~1(V(f, U))=U.

With this structure, we can now describe the domain of holomorphy of a
given holomorphic function f—that is, the largest domain to which f can be
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uniquely extended. It is the connected component E of S which contains f(D).
(Of course f(D) is connected since it is the continuous image of a connected set.)
Although D is not literally a subset of E, it is imbedded by f in E, and thus the
universal holomorphic function Fis the extension to E of the function f.

2. The sheaf of local rings. Let 4 be a commutative ring with 1, and S a
multiplicatively closed nonempty subset of 4 with 0€.S. We construct from 4
and S a ring 4 called a ring of quotients of A, in which the elements of .S have
multiplicative inverses. On the set

AXS={(as)|ec4,secSs}

we define an equivalence relation (a, s)~(b, ¢) if and only if there exists r&.S
such that (at—bs)r =0. We also define two operations,

(a,s) + (8,8) = (at + bs,st) and (e, s)(d, ) = (abd, st),

which are compatible with the relation. We denote by 4 s the ring of equivalence
classes with the induced operations. As in the ring of integers with the set of
nonzero elements as .S, the equivalence class of (g, s) is denoted by a/s; thus we
call S the set of denominators.

The 0 of Ag is 0/s (any s in S), the identity is s/s; and if s&S, s~1=1/s.
There is a homomorphism a:4—A4;s defined by a(a) =as/s, which is indepen-
dent of the choice of s. Of course if 4 is an integral domain, « is one-to-one be-
cause Ker a= {a|sa=0 for some sES}.

If I is an ideal of 4, the ideal () in Ag can be represented by

a(l) = {a/sla € I, s € S},

and we shall write T4 for «(I). This function a on the set of ideals of A defines
a one-to-one correspondence between the set of prime ideals in A5 and the set of
prime ideals in 4 whose intersection with .S is empty [12, p. 223].

Since we may describe a prime ideal P in A as one whose complement is
multiplicatively closed, we may form the ring of quotients of 4 whose set of
denominators is the complement of P. We shall denote this ring of quotients by
Ap, and call it the local ring of A at P. The ring Ap has only one maximal ideal,
PAp, since clearly P is the largest prime ideal of 4 with the property that its
intersection with the complement of P is empty.

These local rings will be the stalks for the sheaf of local rings and the set of
prime ideals of 4 will form the base space. This space is called the spectrum of
4, denoted by Spec 4, and is topologized by taking as a basis for the topology
all sets V,= {PESpec 4|x P} where xEA. Then Vi=Spec 4, Vo=, and
VeN\Vy=Vay; thus {V.}eea is a basis. Since UsenVa={P| (x)scar P} where
(x)zenr is the ideal generated by the subset M of 4, any ideal I of 4 defines an
open set Vy= {Pl IC[P}, and every open set U is of this form although I is not
uniquely determined by U. A closed set, then, is a set of primes containing some
fixed ideal, so that a point P in Spec 4 is closed if and only if it is a maximal
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ideal. For most rings, therefore, the base space is not even 7;; however, Spec 4
is always T,.

It is possible to define a ring of quotients with respect to the complement of
a prime P because it is multiplicatively closed, but the complement of a union
of primes is also multiplicatively closed. Hence, with each nonempty open set
U in Spec 4 we may associate the ring of quatients Ay = {a/slPE U:)sEEP}
whose set of denominators is the complement of the union of all the primes in
U. If Uand V are open sets in Spec 4 such that UC V, we may define restriction
homomorphisms pyv:Av—Ay as follows: if a/s& Ay, s is not an element of any
prime ideal P in V, and so a fortiori not an element of any prime ideal P in U.
Hence a/s is also an element of Ay. We define pyy(ea/s) =a/s, but this map is
not the identity, or even one-to-one, since the equivalence classes which are
used to define the ring 4y are larger than those used to define Ay. The kernel of
pu,v consists of those elements ¢/s such that a is a zero divisor with respect to an
element in one of the prime ideals of ¥ which is not in any element of U.

An important property of pyy is the commutativity of the diagram in Fig.
5, where ay:4—Ay takes a to a/1. Now py,r is uniquely determined by this
property and from this it follows that py,y is the identity map and that if
UCVCW, then py,w=puv,v o pv,w. This system, consisting of Spec A4, the rings
Ay, and maps pyy:Ay—Ay when UCYV, is called a presheaf over Spec A.
Besides the maps py,v corresponding to pairs of open sets for which UCV, we

Ay

Ay av AV
A Pu.v 4 fryv
k\ \
Ay @p Ap
Fi1G. 5 F16. 6

can define maps pp,y:dy—Ap when PEV. If V is open and PEV, we define
pry:Av—A4p, by ppyv(a/s) =a/s, which is possible since a/sE Ay implies s P.
The map pp,r is the unique map which makes the associated diagram commute
(Fig. 6). As before, it follows from the uniqueness of pp,y that

pPP,W O PW,U = PP,U fPewWCU.

If U is open in Spec 4, and u is any element of Ay, we may treat # as a
function from U to the stalk space S=\U{4p| PESpec A} by defining u(P)
=ppy(u)EAp for PEU. If VCU, we call py y(u) the restriction of u to V. If
u&EAy and v&E Ay, and if there is an open set WC UNV such that pw,u(u)
=pw,v(u), we say u and v agree on the open set W, for if PEW, then

u(P) = pp,u(u) = pp,w 0 pw,u() = prp,w 0 pw, v(v) = pp,y(v) = v(P).
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If uE Ay, either the function « or its image #(U) in S is called a section of the
presheaf. The set of sections #(U) covers S, for if ¢/s& A p then s is a denomina-
tor in Ay, where V= {QI sEEQ}, and a/s& Ay is a section over V whose image
at Pis a/s.

The collection of all these sections #(U) is a basis for a topology on S, since
the intersection of two sections is a union of sections. For, suppose uE Ay
and v& Ay are sections over the open sets U and V. If w(U)No(V) = there is
nothing to show. If xEu(U)N\o(V),x=pp,uv(v) =ppy (@) EApfor some PEUNT.
Then u=a/s, where s is not an element of any element of U, and v=a’/s’, where
s’ is not an element of any element of V. Since a/s=a’/s’ in Ap, there exists
tE P such that t(as’—a's) =0. Let W={Q|t&Q}. Then a/s=a'/s" in Aw~vv
and, since the diagram in Fig. 7 commutes, the section over WNUNYV defined
by a/s=a’/s’ is a subset of #(U) and of (V) and it is a neighborhood of x.

Ay

N
/

Av

Awnunv Ap

Fi1G. 7

In this topology the projection p is a local homeomorphism, for if x&4p
there is a section v over V through x for some V, and the restriction of p to the
section v(V) is one-to-one and onto. If UC V is open and x& U, the restriction
of v to U is also a section through x, and thus #(U), where % =py v (v), is open in
u(V); so p is continuous. If N is an open subset of (V) it is a union of sections
over open subsets of V and p(&V) is the union of these open subsets.

The topological space S, together with the projection p:.S—Spec 4, is called
the sheaf of local rings over Spec A. If U is an open subset of Spec 4, any con-
tinuous function f: U—S such that p o f is the identity on U is called a section
of the sheaf S; the set of all sections over the open set U is denoted by I'(U, S).
The relation between the sections of the sheaf .S and the sections of the presheaf
(that is, the elements u& Ay) is rather subtle, for even though each presheaf
section may be thought of as a (continuous) function on U which is a local in-
verse for p, two anomalies may occur. It may be that two different elements
u=a/s and v=0/% of the ring Ay yield the same function under the interpreta-
tion outlined above, or there may be functions in I'(U, S) which cannot be de-
rived from any section # & Ay. Thus the interpretation map from 4y to I'(U, .S)
need not be either one-to-one or onto, though if U isa basis set (that is, one of
the form V, for some x € A) this map is an isomorphism [5, No. 4, p. 86]. For
this reason, the open sets of the form V, are often called distinguished open sets.

If the base space Spec 4 is not Hausdorff, certainly the sheaf S cannot be
Hausdorff. But even if Spec 4 is T; it may well happen (although it is difficult

This content downloaded from 130.71.96.21 on Wed, 20 Mar 2013 17:23:29 PM
All use subject to JSTOR Terms and Conditions



http://www.jstor.org/page/info/about/policies/terms.jsp

1970] WHAT IS A SHEAF? 689

to visualize it on Hausdorff paper) that two distinct sections over U, % and #’,
may agree on a proper open subset V of U (Fig. 8). If P is in the closure of V
but not in V, #(P) and #'(P) are distinct points of the sheaf but cannot be
separated because every neighborhood of P contains points of V on which #
and #’ agree.

Fic. 8

A special case. In order to provide a more geometric interpretation of the
sheaf of local rings as well as a glimpse of the origin of the subject, we shall look
at some special rings. Let Q be the field of rational numbers, Q[x1, - - -, %,]
the ring of polynomials in # variables with rational coefficients, and I an ideal
of Q[x1, + -+, x.]. Let A be the quotient ring Q[x1, - - -, ¥.]/I, which we may
write Q[#, - -, &), where &;=x;+1, i=1, -+, n If E={(x, -+, %)
ECﬂI plx1, -+, %x,)=0for all pEI}, i.e., E is the intersection of the zero sets
of all polynomials in the ideal I, we may interpret 4 as a ring of complex valued
functions on E. For since pi(x) — p2(x) ©I, whenever p;(%) = p2(%), p1(%) = p2(&)
implies p1(x) =po(x) if x= (1, -+ -, x,) EE.

We may also construct, from the pairing which takes p&4 and xEE to
p(x)EC, a one-to-one correspondence between the points in E and homomor-
phisms from 4 to C. If x=(x1, - - -, x,) EE the function which takes p to
p(x) is a homomorphism from 4 to C, and conversely, if ¢:4—C is a homomor-
phism, x=(¢(&1), - -, (%)) EE, since if pE&1,

p(x) = p(3(£1), - - -, ¢(&)) = &(p(31), - - -, p(&)) = ¢(0) = 0.
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Since C is an integral domain, the kernel of the homomorphism defined by
x& E is a prime ideal in 4. Conversely, it may be shown that if P is an element
of Spec 4 it is the kernel of some homomorphism from 4 to C [13, p. 164]. So
we may regard Spec 4 as a set of equivalence classes of E under the relation
x~x' if and only if ¥ and «’ are zeros of the same polynomials p& 4. Thus if
x~x', p(x) =p(x') for all p in 4, so 4 may also be interpreted as a ring of func-
tions on Spec 4.

That an element p of 4 not be in a prime P means that p is not in the kernel
of the map A—A4 /P, or that p is not zero on any point x in E for which the
kernel of the corresponding homomorphism is contained in P. Thus, the local
ring Ap at P, which contains the inverses for all p€E P, is the ring of all rational
functions defined locally, i.e., in some neighborhood of P in Spec 4. The set of
such functions which vanish at P is the only maximal ideal in this ring. The
ring Ay of presheaf sections over an open set UCSpec 4 is a ring of functions
defined at every point of U. (If U is a distinguished open set, Ay is the ring of
all such functions.) The kernel of a restriction map py,v:Ay—Ay (where UCV)
is the set of functions which vanish at every point of U, though they may not
vanish on all of V. The elements of Ay which are not restrictions of functions
in Ay are inverses of functions which have zerosin V— U.

The topology of Spec 4 induces a topology in E, the weakest one in which
the identification map from E to Spec 4 is continuous. In this topology, the
closure of a point x & E is the set of all points in E which satisfy the same poly-
nomials as x.

We choose a particular ring 4 to study in more detail. In Q[x, y], let I
= (xy), and

4 = Qlx, y]/(y) >~ 0z, 5],
where %y =xy-+ (xy) = (xy) =0. Then
E={(zwe&Cmw=0}={(0)]|scC}VU{0wv|wec}

the union of the complex coordinate axes (planes) in C2%

The ideals (%) and (5) in 4 are prime but not maximal, since Q[#, 7]/(%)
~Q[5]~Q[y], which is not a field. The points (z, %) in E whose corresponding
ideal is (%) are those of the form (0, w) where w is transcendental over Q, and
similarly, the points corresponding to the ideal (3) are of the form (z, 0) for
transcendental g, since the homomorphism of Q[%, ]—C given by 2—0, j—w
has kernel (%) if and only if w is transcendental. Further, (£)N\(3) =(0) in 4,
any prime ideal contains either (%) or (¥), and the set of zero divisors in 4 is
@Y.

The maximal prime ideals in 4 are kernels of homomorphisms ¢: [&, 7]
—C for which the image is a field, so that ¢ (%) and ¢(§) must be algebraic,
and since ¢(£)¢(§) =¢(2¥) =0, one of ¢(£) and ¢(§) must be zero, and the other
algebraic. Such points (¢(%), ¢(9)) in E are either of the form (z, 0) with z
algebraic, or (0, w) with w algebraic. The kernels of the homomorphisms to
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(z, 0) and (0, w) are the ideals (p(%), ») and ((£), ¢(9)) where p is the minimal
polynomial of z (and g of w). These ideals together with (%) and () are pre-
cisely the points of Spec 4.

The points of EC C? are divided into equivalence classes corresponding to
the ideals in Spec 4: to each of (x) and (y) there corresponds a class of tran-
scendental points, while to each maximal ideal (p(&), ) (where p is irreducible)
there corresponds the set of algebraic points {(z, O)} where 2 is a root of .

In the topology induced on E by Spec 4, the closure of a transcendental
point (z, 0) is the z-axis and the closure of an algebraic point (z, 0) is all (3, 0)
where 3’ is also a root of the minimal polynomial of z. A basis for the open sets
in Spec 4 is the collection of all sets of the form V,= {PESpec A[ pEEP}. In
the special case p =%,

V,={PESpec 4| 2&P}={(5, p(&))|pEA4 is irreducible or zero, p=~z}.

The open set VzCSpec 4 corresponds in E to the complement of the w-axis.
Similarly, V; may be regarded as the complement of the z-axis. The complement
of a finite set of algebraic points corresponding to the maximal ideals

@ 219))s -+ = s & 26(3))s (Br41(8), ), - - -, (Pul(®), 5)

is Vo, + + » NV, . Since every polynomial pE 4 = Q[z, 5] can be written as
p=p1(x)+p2(y) —c, where p1(0) =p2(0) =p(0, 0) =¢, the points in V, are (z, 0)
where p1(2) =0, and (0, w) where ps(w) =0.

Geometrically, the ring 4 = Q[#, 7] is the ring of polynomials defined every-
where on E, the union of the complex axes. At a point (2, w) in E (where either
z or w is 0) corresponding to a prime ideal P, the local ring Ap contains all
rational functions whose denominators do not vanish at (z, w). The local ring
A is the local ring at any (0, w) where w is transcendental. Algebraically, we
have the set of denominators S=4 — (&)= { p|p:(3) %0} where, as above,
p=p1+pr—c. The kernel I of the homomorphism a:4—A4; is {¢€4 IEPES
such that pg=0 } . If py+p2—cis azero divisor, ¢=0; if such a point is also in S,
we have py(3)50 and $:(0) =0, so it is an element of (3)— {0}. Therefore
I=(z). Thus A/I=Q[z, 5]/(&)=Q[5] and the image of S in Q[y] is Q[¥]
—{0}; so Az is isomorphic to the field of rational functions in y. Similarly

For the local ring at a maximal prime other than (%, ¥), for instance P = (&,
¥2—2), a similar argument will lead to the ring 4p= {p/gEQ(y)l (y*—2) does
not divide ¢}. That is, 4» contains inverses for all functions that do not vanish
at (0, v/2), while two polynomials in £ and § which agree on an open set con-
taining (0, v/2) are identified in 4p. Thus the map a:4—4p is neither one-to-
one nor onto. Now if P = (%, 7), the set of denominators for 4p is exactly the
set of polynomials p1+p,—c for ¢50. So in this case the map a:4—Ap is an
inclusion which is not onto.

Finally, we describe the rings of presheaf sections Ay, for open sets U. If U
is the complement of a finite closed set of maximal primes (%, p.(3)), - -,
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&, (), (Prsa(®), %), - - -, (pa(&), 9) the set of denominators for Ay is
{pEA| p&UrcuP}, which is the set of all products p3* - - - p2» with nonzero
constant term. The map from Ay—Ap when PEU will have kernel (%) if
P=(z, p(9)) (where p is any irreducible polynomial except #); () if P =(¥) or
(3, (2)) (where p(x) #x); and (0) if P = (%, 7).

If U=V} is the complement of the w-axis, the set of denominators for Ay
is the set of polynomials 3p(3) +c#», for pEQ[5] and n=0. Thus

Ay = {p@) /2| p € Q[x]}.

Since A4 (5~~Q(x), the map p¢y,v: dv—A 5 from the ring of sections to the stalk
at (§) is one-to-one but not onto. For a maximal prime (§, p) & Vg, where p(x) #x,
P@.», v Au—A . is an inclusion since x does not divide p. If U is the comple-
ment of the closed set (&, p1(¥)), - - -, (& px(¥)), then VzCU, and the re-
striction map pyz,v:dv—Av; has kernel (3).

The ring of sections over Spec 4 is 4, for every element of 4 vanishes at
some point in Spec 4. Thus for every kind of open set U in Spec 4, the ele-
ments of the rings Ay are the rational functions defined at every point of U.

In particular the functions # and #-% are sections on the open set Spec 4.
They agree on the proper open subset Vg, for (7) is the kernel of the restriction
map pvz, spee 4, but do not agree on (%, y), which is in the closure of V. Thus the
points & and £+7 in A5, though distinct, cannot be separated by sections
since any open set containing (%, J) must intersect Vz Thus this sheaf fails to
be Hausdorff both vertically as well as horizontally.

3. The sheaf of differential forms. Let p X where X is a C* manifold over
R», We denote by C, the set of all functions from X to the real line R* which are
C= in some neighborhood of p. Clearly C; is a vector space over R in which the
sum f+g is defined on the intersection of the domains of f and g.

A tangent to X at p is a linear function ¢: C; —R! such that

1(fg) = 1(g)-g(p) + f(p)-1(g)  whenever f, g € C;".

The set of all tangents to X at p forms a vector space over R which we call X,
the tangent space to X at p. If v:[0, 1]—X is a C* function such that (%) =p,
and if fECY, then fov:[0, 1]>X—R. If (fov)’ is the derivative of fo4,
the function yx: C—R*! defined by v«(f) = (f o ¥)’(¢o) is a tangent. To interpret
this geometrically, we consider a particular local coordinate system (Up, 7,) where

mp: Up—R™ If m;:R"—R! is the projection function defined by mi(ti, - - -, ta)
=t¢;, we write Xx;=m;0m,; then my(p)=(@x1(p), -, x(p))ER" If e
=(0,0,--+,1,-+-, 0)ER", we think of the curve y(t) =, (7 (p) +ie;) as

the ith coordinate axis in U, since (d/dt)(mp 0y)|o=e: Then the tangent 7y«
satisfies

d
7+(f) = (fo)'(0) = 71-(1’01&7‘0%07)
' 0
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<6(f om;") I(fo r;l)> a(f o 13
= ————— . o ) Oe‘. = ———— .
aty oty Tp (D) at; 7p(p)
Thus y(f) is usually denoted by (8/dx,)f; the tangents (9/9x;), - - -, (3/0x,)

form a basis for the vector space X, [8, p. 7]. We think of X, as an n-dimen-
sional hyperplane tangent to X at p (Fig. 9). If

i}
Y = Za;——;
6x,-

then v«(f) is a-grad f, that is, the derivative of f in the direction a=(ay, - - -+,
an) ERn.

Fic. 9

If : X— 7Y is a C* mapping of manifolds we define the differential of ¢ to be
the linear map d¢:X,—Y4» defined as follows: if tEX, and f&EC s, then
[do @) 1(f) =t(f o p). If (Uy, ) is a local coordinate system at pEX then x;
=1; o 7, defines a C*-map from the submanifold U, to the manifold R!. Hence
the differential dx; of x; is a linear transformation from X, to R;,,. Since R; is
isomorphic to R! for any & R?!, we may consider dx; as an element of the dual
vector space X, of X,. Since dx; (8/9x;) =8:; (where 8;;=0 if 57, and 1 if ¢ =7),
the differentials dx;, - - -, dx, form a basis of X,’f dual to the basis 9/9x;,

<.+, 0/0x, of X,.

Whereas each differential dx; is a function of just one variable, a differential
form in general is a function of several variables. To be precise, a differential k-
form 6 on X, is an alternating k-linear function from k-tuples of elements of X,
to RY. (0 is k-linear if it is linear in each variable separately, and alternating if
f@t - - - i) =sgno f(tsqy * * * texy) Where o {1... k}—>{1 -+ k} is a permu-
tation and sgn ¢ is +1 if ¢ is even, and —1 if ¢ is odd.) We denote by the wedge
product dx;, /\ - - - Adxy the unique k-linear form on X, defined on a basis for
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the set of k-tuples by

3 3
dxﬁ/\---/\dx,-k(g——, ---,—-—)=a,

X5y 9%,

where d=1if (44, - -+, %) =(j1, * * +, j») and O otherwise. The set of all k-
linear forms on X, is an #* dimensional vector space over R and the n* forms
dxiy N\ - -+ Ndxi, where 13,-6{1, s e, n}, form a basis for this vector space.
The set of differential k-forms is a subspace of the set of all k-linear forms and it
has as a basis the k-linear forms dxi, A - - - Adxi, where ;<5< « + « <2 We
call such a sequence of indices an increasing k-tuple. Thus the dimension of the
space of differential k-formsis(}) if k<n and 0if k>n.

Let Si denote the set of all increasing k-tuples of positive integers less than
or equal to #n. For x €S; we denote by dx, the k-form dx; A - - - Adxy, where
s=(%, + + +, %). Now let UCX be an open set and 6 a function which assigns to
each pEU a differential k-form at p, 8(p). Thus, once having chosen a local
coordinate system at p, so the forms dxi, dx,, - - -+, dx, are defined, we may
write

0(p) = 2 au(p)dx.,

s€S8y

where each a,(p) is the coefficient in the expansion of 8(p) in terms of the basis
{dx,}.es,,. Thus a, may be considered as a function from U to R!. Since each
0(p) is a differential k-form at p, we call 8 a C*® k-form on U if each function a, is
C=; we denote by Q*(U) the real vector space of all C* k-forms on U. If UCV
then there is a linear transformation py,y:Q*(V)—Q*(U) defined by restriction
of the domains of 6&Q*(V). The collection {Q"(U)} for U open in X together
with the linear transformations py v is called the presheaf of differential k-forms.

Since every paracompact manifold has a C* partition of unity subordinate
to any open covering { U.} [8, p. 85], presheaves over such manifolds satisfy the
following special property: If U= U, where U, is open in X, and if 6, &Q*(U,)
are coherent in the sense that the restrictions to U,N\Us of 0, and 65 agree
(whenever U.NUp#<f) then there exists a unique §&Q¥(U) whose restriction
to each U, is 8,. Certainly if {f.} is a C* partition of unity for {U,} so that
fout U>RY, fo vanishes off U,, and Zfa=l; so we may define 0 to be Zf,,@a.

Any such presheaf is called a sheaf, so when X is paracompact, we will call
the system {Q¥(U), puv} the sheaf of differential k-forms. If Q*(p) is the set of
differential k-forms at p, we may think of Q*(p) as the stalks of the sheaf S:
S=U,exQ*(p). The projection p:S—X assigns to each differential form at p
the point p. The C* k-form 0€Q*(U) is a section of .S, and the collection
{B(U) CSI U is open in X } forms a basis for the topology on S.

4. Sheaves: General definition. Each of the three previous examples re-
flects a different facet of the general concept of a sheaf. To emphasize this
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Sheaf of Germs Sheaf of
of Holomorphic Sheaf of Local Rings Differential
Functions Forms
Germ 7L al/sEAp
Stalk Space S={(, [flo} | S=U{4r]PESpec 4}
Projection p: S—(Cn p: S—Spec 4
Stalk {@ [FI)] rea.} Ap(local ring)
Base Space Cn Spec A = {P|P is prime | X =C"manifold
ideal in 4}
Presheaf Section a/sEAy 0EQ*(U)
Restriction Homomorphism pu.v: Ay— Ay pu.v: Q(VY-Q(U )
Fic. 10

variety and to provide a coherent framework for the subsequent general defini-
tion, we summarize in Fig. 10 the three sheaves already discussed.

The sheaf of germs of holomorphic functions was defined to be the stalk
space S together with a topology and a local homeomorphism p onto C* The
sheaf of local rings was defined similarly, though in this case we also identified
the system consisting of the rings Ay and the restriction homomorphisms
puyv:Av—Ay as a presheaf of rings. In the third case, the sheaf of differential
k-forms was simply the presheaf of differential k-forms whenever the base space
X was paracompact. The recognition of the equivalence of these two descrip-
tions constitutes the beginning of sheaf theory, We now introduce definitions
to formalize these two approaches and prove the definitions equivalent.

DerINITION 1. Let (X, 7) be a topological space, and let @ be a class of simi-
lar mathematical objects (e.g., abelian groups, modules, rings). Let F be a
function from 7 to € and suppose for each pair U, V&7 for which UCV there
is a map (e.g., a homomorphism, module homomorphism, or isomorphism)
puv: F(V)—F(U) which preserves the structure of the objects of €. If py,v 0 pr,w
=py,w whenever UC VC W, and if pp,v is the identity function on F(U), we de-
fine the function F together with the restriction maps pr v to be a presheaf over X.
The elements of F(L) are called sections of F over U. (In the language of cate-
gory theory, a presheaf is a contravariant functor from the category of open
sets and inclusion maps of X to some category of objects and morphisms.) A
sheaf is a presheaf which satisfies the following two coherence axioms:

1. If {U.} is a family of open sets in X, if U=UU., and if the section s,
t& F(U) agree on each U, (i.e,, if pu,,vu(s) =pu,u(t) for each &), then s =t.

2. If {U.} is a family of open sets in X, if U= U,, and if the sections
s« EF(U,) are coherent in the sense that the restrictions of s« and sg to U N\Up
agree (i.e., if pu,Av,v,(Sa) =pv, v, (ss) whenever UaMUgs= ) then there exists
a section s& F(U) such that for each a, py,u(s) = Sa.
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DeriniTiON II. Let (X, 7) be a topological space, and let @ be a class of
similar mathematical objects (e.g., abelian groups, modules, rings). A skeaf over
X is a triple {S, T, X}, where S is a topological space and 7:S—X is a local
homeomorphism (i.e., a map such that each point p&S has a neighborhood U
on which 7|y is a homeomorphism) such that each stalk 7'(x) E€, and each
operation is continuous as a function from U,ex(r1(x) X7~ 1(x)) (with the
topology induced from SX.S) to Usexm™1(x) =S.

We shall call a sheaf of type I a sheaf of sections, and a sheaf of type Il a
sheaf of germs. The relationship between these two types of sheaves is precisely
as illustrated by the preceding examples.

To be specific, suppose F is a presheaf (of sections) over W; we construct
the corresponding sheaf of germs by defining a germ at x&X to be an equiva-
lence class of A,=U,evrF(U) under the relation s&F(U)~tEF(V) if pw,u(s)
=pwy(t) for some WCUNYV. Thus the germ of a section s& F(U) at a point
x& U is the collection of all sections t& F(V) which agree with s on some neigh-
borhood V of x. We denote, as usual, the germ of s at x by [s]., and let the stalk
space S be {(x, [s]:)|s€EF(U), where x € U}. The topology on S is generated
by neighborhoods of the form V(s, U)={(x, [s].|xE U}, so the projection
m:S—X becomes a local homeomorphism. By interpreting the sections as
functions, the so-called restriction maps py,y really are restrictions and the
topology on S is the strongest relative to which the sections are continuous.
(The topology on S can also be characterized as the quotient of the topology
on Uver (UXF(U)) under the equivalence relation induced by ~, where each
U carries the subspace topology and F(U) is discrete.)

Each stalk 7—1(x) clearly inherits the operations of the F(U) and each such
operation is continuous. For example, if each F(U) is an abelian group under
addition and if [s], and [¢t],E7'(x), then [s],+ [t]. is defined to be [s-+¢],. If
V(s+t, U) is a neighborhood of [s+¢],, then the inverse image of V(s-+¢, U)
under + contains {(r, ¢)|7EV(s, U), ¢EV(t, U), 7(r) =7(q) }, an open set in
Usex(m1(x) X7~1(x)). Thus {S, =, X} is indeed a sheaf of germs.

Conversely, suppose {S, m, X } is a sheaf of germs (perhaps one constructed
as above from some presheaf). If U is open in X, let F(U) be the collection of
continuous functions s: U—F such that = o s is the identity on U. F(U) inherits
the algebraic structure from the stalks by pointwise definitions, and the re-
striction maps py,v are just that—the restriction of s from V to the subset U.
The first coherence axiom for sheaves is satisfied trivially since the sections are
functions, and the second is satisfied since the F(U) contain all continuous func-
tions from U to F which are inverses of .

Now if {F, =, X } is a sheaf of germs, the sheaf derived from its (pre)sheaf
of sections is canonically isomorphic to F. However, if S is a presheaf of sections,
the presheaf of sections S’ associated with the sheaf of germs derived from S is
generally different from S, for since S’ is a sheaf, it may have more sections than
S (in order to satisfy the second coherence axiom), while some sections which
were distinct in S may be identified in S’ (because of the first axiom). Of course,
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if Sis a sheaf, then 8’ is naturally isomorphic to S, so in this sense the two defini-
tions of a sheaf are essentially equivalent.

A common and convenient alternative to the construction of equivalence
classes is the use of direct limits. If F is a presheaf of sections over X, and if
xEX, the restriction of F to the neighborhoods of x forms a directed system
({F(U) }sev, {puy}ecver) since puy opr.w=pv,w, whenever xCUCVCW.
A few elements of such a system may be represented by the commutative dia-
gram of Fig. 11.

S Py 4
E(Wy) w-F(U)

pV, 2% F(Vl) PU Vs

A"m

4
—= F(Ws) / F(ViNVy)

PV, AV,V,

Fic. 11

The direct limit of this system is, roughly speaking, the first object which
can appear to the right of the diagram. Specifically, an object F, together
with maps py: F(U)—F, for each F(U) is called a direct limit of the system
({ F(U) }sev, {pv.v}zcver) provided that

(i) whenever UCV the diagram in Fig. 12 commutes,

(ii) F. is universal with respect to property (1)——that is, if (Ga { a,}) also
satisfies property (i), then there exists a unique map %: F,—G, such that for
each oy: F(U)—G,, ouv=1 0 py.

F(V) -——-——-» F,

N

F(U)
F1G. 12

Condition (i) makes explicit the idea of “appearing on the right of the dia-
gram” while condition (ii) asserts that F, is the first such object. It follows
trivially from these conditions that the direct limit is unique (up to isomor-
phism), so we denote it by Um, .y F(U).

Consider now the stalk of germs at x derived from the presheaf F. If py
denotes the map from F(U) to the stalk 7(x) defined by pu(s) =(x, [s].)
(where x& U), then 7~(x) =1im,cy F(U) since whenever x& UCV, py =puv 0 pv,v
and 7(x) is universal with respect to that property. To prove this last asser-
tion we assume that (G, {ay}) is another direct limit and observe that if both
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tEF(Uy) and 6 EF(U,) are in the same germ [s]., then av,(t) =0u,(f), for by
the definition of [s],, there exists some V' C UyN\U, such that py,v,(4) =pv,v,(t2).
Then by the commutativity of the diagram in Fig. 13, we have

ov,(t) = av o pr,u,(tr) = ov 0 py,u,(ts) = ou,(t,).

Ty,
F(U) T ——— Py —
1
M P/
F(V)
Ry Py
o
F(UY) . )
P
Pu,
FiG. 13

Thus each element [s], of 7~1(x) is mapped to some point of G by the appropri-
ate oy o py': we call this point #(x, [s].) and thereby define the required unique
map from 71(x) to G.

So we may summarize all three approaches in one sweeping generalization:
for each xEX, the stalk over x of the sheaf of germs is the direct limit of the
restriction of the presheaf to the neighborhoods of x.

We close this section with a fourth characterization of sheaves, this one also
based on a universal property, and illustrated to some extent in the previous
examples. Suppose F is a class of functions defined on open subsets of a topologi-
cal space X. If F(U) is the collection of all f&EF whose domain is U, and if
pu.v is the restriction map (i.e., pvy(f) =f | v whenever UCV and f&€ F(V)), the
collection {F (U), puv} is a presheaf. If this presheaf is a sheaf S (as it will be if
& is the set of holomorphic functions on open subsets of C?, or the set of differ-
ential forms on open subsets of a paracompact manifold X) then we can define a
universal continuous function ®:S—R of type § so that each f&EF(U) factors
}miquely through the sheaf S: that is, there exists a unique 7: U—S such that

=P of.

In general, any object S and map ®:S—R with the property that each func-
tion f: U—R factors uniquely through S via ® is called universal with respect
to the characterizing properties of the functions f. The pair (S, ®) is uniquely
determined (up to isomorphism) by this property. Thus, for instance, the sheaf
of holomorphic functions is characterized by being the unique universal object
for the family of holomorphic functions.

Since f-1(V(f, U))="U, } is continuous. Thus sheaves transform a compli-
cated property of functions, such as analyticity, into the simpler one of continu-
ity, for the topology on the sheaf is chosen precisely so that a continuous section
on U (i.e., an element of F(U)) corresponds to one of the specialized (e.g.,
analytic, differentiable) functions of F(U).
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5. History and applications. Sheaf theory is a particularly effective tool in
those areas which ask for global solutions to problems whose hypotheses are
local. Among the early papers which introduced the ideas, though not the lan-
guage, of sheaf theory, many were concerned with the Cousin problems from
the theory of functions of several complex variables; the first (or additive) and
second Cousin problems ask respectively about the existence of a meromorphic
function with specified poles and the existence of a holomorphic function with
specified zeros. Henri Cartan and Kiyoshi Oka independently solved these
problems, working in the ring of germs of holomorphic functions introduced in
our first example, where the operations take into account the domains of the
functions. Oka [1950] cites Cartan [1940] as the source of the notion of “idéal
holomorphe de domaines indéterminés” in this ring, and both Oka [1951] and
Cartan [1944] refer to the article of W. Riickert [1933] which took the concept
of ideal from polynomial rings and interpreted it in the ring of functions on a
fixed domain. Cartan [1944] carried on the investigation of the sheaf of germs,
still in the earlier terminology, clarifying the relations among the problems with-
out achieving solutions.

Independently, Oka in 1948 wrote a paper [1950] (seventh in a series pub-
lished from 1936 to 1953 and collected in a single volume [1961]) which de-
veloped the same material in a more complete form, and carried it through to a
solution of the first Cousin problem. Building on Oka’s paper, Cartan was able
to solve the second problem as well as to simplify Oka’s solution to the first,
and his paper [1950] and Oka’s were published together. A footnote acknowl-
edges Oka's solution of the second problem in the meantime [1951].

The 1950 Cartan paper for the first time phrases the questions in the sheaf
theoretic terms which had been developed in the Séminaire Cartan in 1948—-49.
An analytic sheaf, that is a sheaf of modules over the sheaf of germs of holo-
morphic functions, is called cokerent over an open set U if for every x& U there
is an open set U, such that the sections over U, generate the stalk at y for all ¥
in a sufficiently small neighborhood of x. If fi, - - -, fi are functions holomorphic
on a domain D, we may define the sheaf R of relations among the f; by taking
the sections Ry of R over U open in D to be the set of k-tuples of holomorphic
functions (g, - - -, gx) for which D% .fig;=0 on U. In this vocabulary the first
Cousin problem is to show that R is coherent, while the second problem simi-
larly asks whether the sheaf over an analytic variety is coherent, where a vari-
ety is the set of common zeros of a set of holomorphic functions, and the ideal
of sections over an open set is the ideal of functions on the variety which vanish
on that open set.

Cartan borrowed the term “faisceau” (sheaf) from Leray [1945; 1946].
Leray’s concept was closer to that of a “presheaf.” Cartan [1953] attributes the
topological definition to an exposition by Lazard in the Séminaire Cartan
[1950]. In each case, the key concept was that of a system of local coefficients.
Studying sets of invariants for an object (base space) by investigating what
functions can be defined from it to some convenient object called a set of co-
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efficients, as is done in cohomology, leads very naturally to a sheaf of coefficients
since the presheaf structure allows coefficients to be assigned locally, that is,
to each open subset of the base space. Formally, the principal construction of
cohomology with coefficients in a (pre)sheaf follows the Cech construction of
cohomology with fixed coefficients.

Let X be a topological space and S a sheaf over X, say of abelian groups.
For any open cover U of X, a g-cochain, ¢ being a nonnegative integer, is an
alternating function which assigns to every ¢-1-tuple of sets in the cover U
a section over the intersection of these sets (the zero section if the intersection
is empty). C2(U, S) denotes the group of g-cochains. For each ¢ a coboundary
operator 84, §2: Ci(U, S)—Ceti(U, S) is defined by

g+l

5qf(U.'0, Ct U‘q+l) = Zo (_l)jf(U"o) R Ui’j: R} U‘l'q+1)7

=
where the caret over U;; means that Uy, is to be omitted from the arguments of
f, and each of the sections on the right is to be interpreted as restricted to the
intersection of all the U;;,. By convention we write § for all 82 Since f is al-
ternating, 66=0, so the image 6(C7'(U, S)), whose elements are called co-
boundaries, is contained not merely in C¢(U, S), but in the set of cocycles
Zi(U, S), the kernel of

5:C1(U,S) — Cett (U,S).

The gth cohomology group He(U, S) of the cover U with coefficients in S is the
quotient .group Ze(U, S)/8(Cr1(U, S)). Although the construction of the
cohomology group uses only the presheaf of sections of S, the sheaf property
allows us to interpret H°(U, S). In order for 0-cochain to be a cocycle,

8f(Us, U1) = puonv, v,(f(U1)) — puenu,u(f(U))

must be zero, and in any sheaf, a collection of sections so related defines a
unique global section. Thus H°(U, S) is Sx—independent of the cover U. For
all g, if U is a covering which refines a covering U, the restriction maps can be
used to define a canonical map H(0, S)—H(U, S). The direct limit, over all
coverings U of X, of the groups He(U, S) with these maps, is the gth cohomology
group of X with coefficients in the sheaf .S and is denoted by He(X, S).

One property frequently taken as axiomatic for cohomology theories holds
also for this one. If 0—F.,GLH—0 is an exact sequence of sheaves over X,
there is a long exact sequence of cohomology

0 —HYX, F) —» HY(X,G) —» H(X,H) - H'(X,F) —> - - -
— HY(X, H) — H(X,F) —» H(X,G) —» H(X,H) —» H*(X,F) —> - - -
[2, p. 28]. As usual, a pair of homomorphisms 4-%,B2,C is exact at B if Im f

=Ker g, so the exactness of 0—FZL,G% H—0 means that F is a subsheaf of G
(this requires f to be an open mapping), g is onto, and H is isomorphic to the
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quotient sheaf G/F. The existence of the long exact sequence is the major rea-
son for the usefulness of cohomology, for the 0-dimensional groups which begin
the sequence are the groups of global sections, while the higher groups by their
construction reflect the local properties of X.

For instance, if we take F to be the sheaf of germs of holomorphic functions
on a complex manifold X, and G to be the sheaf of germs of meromorphic
functions, then F is a subsheaf of G, and the global sections of the quotient
sheaf G/ F can be interpreted as the data of the first Cousin problem, since each
section describes the behavior of a function near its poles [9, p. 161]. Thus,
since this problem asks whether there exists a function meromorphic on X with
such poles, the first Cousin problem may be interpreted as asking whether the
last map in the sequence 0—Fx—Gx—(G/F)x is onto. This sequence is the
beginning of the long exact cohomology sequence, and the next group in that
sequence is H'(X, F). The Cartan-Oka result is that H¢(X, F) =0 for all ¢g=1
if X is a Stein manifold, a class of manifolds with “sufficiently many” holo-
morphic functions, which includes all Riemann surfaces which are connected
and non-compact. In addition to proving this result, Cartan [1953] and Serre
[1953] give other applications of the fundamental theorems for a Stein manifold
X:

THEOREM A. For every coherent analytic sheaf S over X, H'(X, S), which is
the module of global cross sections Sx, generates the stalk Sz for every xEX.

THEOREM B. For cvery coherent analytic sheaf S over X and ¢=1,
H(X, S) =0.

Properties A and B characterize Stein manifolds.

The proceedings of the 1954 AMS summer institute [1956] illustrate that
by then the basic concepts of sheaf theory had been clarified apart from the
original example, and the bibliographies indicate that applications had begun
to diversify, particularly into algebraic geometry. For example, Kodaira and
Spencer showed the equivalence of several different definitions of the arithmetic
genus of an algebraic variety and provided a classification of complex line
bundles [1953]. Hirzebruch gave a sheaf-theoretic statement and proof of the
Riemann-Roch theorem [1953;1956], and Weil of the deRham theorem [1952].

One seminar at the 1954 institute was based on an early version of Serre’s
major article FAC [1955], the first entirely algebraic development of sheaf
theory. The applications to complex variables had frequently made use of
complex integration, and this tool was not available in abstract algebraic
geometry. “Faisceaux algébriques cohérents” are coherent sheaves which are
sheaves of modules over the sheaf of local rings on an algebraic variety. Serre
showed that if the base field is the field of complex numbers, the theory of
algebraic coherent sheaves is isomorphic to the theory of analytic coherent
sheaves. Going further in the direction of an algebraic treatment, Grothendieck
dealt with sheaves in the context of cohomology in an abelian category [1957].
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The publication of Godement’s book [1958] signals the appearance of sheaf
theory as an independent discipline. The bibliography which follows lists both
recent treatments of sheaf theory and books on other subjects which make use
of sheaves.
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ON THE FOUNDATIONS OF SET THEORY
J. D. MONK, University of Colorado

I want to discuss here the relevance to mathematicians, as teachers and
researchers, of some of the recent discoveries about axiomatic set theory. Most
readers have heard of these advances, which began just a few years ago with
Cohen’s work. The results are certainly intellectually amazing to all of us. I
think they may even give rise to certain changes in our teaching and research,
and the purpose of this paper is to describe some possibilities along these lines.
To set the stage and fix the ideas I shall first describe a few of these discoveries
in a fairly precise way. Then, in the nonexact portion of the paper, I shall dis-
cuss some possible changes in teaching and research, and also some philosophi-
cal views which are affected by these discoveries.

1. A survey of results. A much more comprehensive (and more technical)
survey can be found in Mathias [7]. Here I state just a very few results, but I
wish to emphasize that the nonmathematical arguments of the next section
apply in some form to virtually all of the results described in [7]. I assume that
the reader has a modest acquaintance with the idea of a language and a meta-
language, and with the precise notions of a (first-order) sentence, a (formal)
proof, and a theorem. In this section I work in a metalanguage and talk about
the language of mathematics. I leave the metalanguage unspecified in detail;
to begin with I assume that it is rather weak, with just enough machinery to

Prof. Monk received his Berkeley Ph.D. in 1961 under Alfred Tarski. After a post-doctoral year
at Berkeley, he came to his present post at Colorado. His main research is in algebraic logic, and
he has published the books, Introduction to Set Theory (McGraw-Hill 1969) and (with L. Henkin
and A. Tarski) Cylindric Algebras, Part I (North Holland, forthcoming). Editor.

This content downloaded from 130.71.96.21 on Wed, 20 Mar 2013 17:23:29 PM
All use subject to JSTOR Terms and Conditions



http://www.jstor.org/page/info/about/policies/terms.jsp

	Article Contents
	p. 681
	p. 682
	p. 683
	p. 684
	p. 685
	p. 686
	p. 687
	p. 688
	p. 689
	p. 690
	p. 691
	p. 692
	p. 693
	p. 694
	p. 695
	p. 696
	p. 697
	p. 698
	p. 699
	p. 700
	p. 701
	p. 702
	p. 703

	Issue Table of Contents
	The American Mathematical Monthly, Vol. 77, No. 7 (Aug. - Sep., 1970), pp. 681-804
	Front Matter [pp. ]
	What is a Sheaf? [pp. 681-703]
	On the Foundations of Set Theory [pp. 703-711]
	Thinking Geometrically [pp. 711-721]
	The William Lowell Putnam Mathematical Competition [pp. 721-728]
	Correction to "Life Without T<sub>2</sub>" [pp. 728]
	Mathematical Notes
	A Borel Set which Contains no Rectangles [pp. 728-729]
	A Continuous Almost Periodic Function has Every Chord [pp. 729-731]
	A Characterization and a Canonical Decomposition of Hurwitzian Matrices [pp. 732-733]
	On Groups of Motions Generated by Two Rotations [pp. 733-735]
	On the Location of Singularities of Analytic Functions [pp. 736-738]

	Research Problems
	On Sets of Distances of n Points [pp. 738-740]

	Classroom Notes
	Sizing up Sets and Continuity--Differentiability Relationships [pp. 740-743]
	The Number of Irreducible Polynomials of Degree n Over GF<sub>(</sub>p) [pp. 743-745]
	On the Convolution of Distribution Functions [pp. 745-746]

	Mathematical Education
	The Question of Accreditation and Certification [pp. 746-751]
	The Undergraduate Program in Mathematics [pp. 752-755]
	Mathematics for Scientist and Engineers [pp. 755-760]
	Cryptology as a Senior Seminar Topic [pp. 761-764]
	Faculty Development Scholar--Answer to Stagnation [pp. 764]

	Problems and Solutions
	Elementary Problems: E2247-E2252 [pp. 765-766]
	Solutions of Elementary Problems
	E2139 [pp. 766]
	E2140 [pp. 766]
	E2176 [pp. 767-768]
	E2190 [pp. 768]
	E2191 [pp. 768-769]
	E2192 [pp. 769-770]
	E2193 [pp. 770]
	E2194 [pp. 771-772]
	E2195 [pp. 772]
	E2196 [pp. 772-773]
	E2197 [pp. 774]

	Advanced Problems: 5736,5746-5752 [pp. 774-776]
	Solutions of Advanced Problems
	5673 [pp. 776]
	5676 [pp. 776-777]
	5677 [pp. 777-778]
	5679 [pp. 778-779]
	5680 [pp. 779-780]
	5681 [pp. 780-781]
	5682 [pp. 781]
	5684 [pp. 781-782]
	5685 [pp. 782]
	5686 [pp. 782-783]


	Reviews
	Review: untitled [pp. 783-784]
	Review: untitled [pp. 785]
	Review: untitled [pp. 785-786]
	Review: untitled [pp. 786-787]
	Review: untitled [pp. 787-788]
	Review: untitled [pp. 788]
	Review: untitled [pp. 788-789]
	Review: untitled [pp. 789-790]
	Review: untitled [pp. 790]
	Telegraphic Reviews [pp. 791-796]

	News and Notices [pp. 797-799]
	Mathematical Association of America: Official Reports and Communications
	November Meeting of the Northeastern Section [pp. 799-800]
	February Meeting of the Northern California Section [pp. 800]
	March Meeting of the Oklahoma-Arkansas Section [pp. 800-801]
	Announcement of Lester R. Ford Awards [pp. 801-802]
	New Sectional Governors of the Association [pp. 802]
	Report of the Treasurer for the Year 1969 [pp. 802-803]
	Calendar of Future Meetings [pp. 804]
	Future Meetings of Other Organizations [pp. 804]

	Back Matter [pp. ]



