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The rapid growth of computing and applications has
helped cross-ferdlize the mathematical sciences, yielding
an unprecedented abundance of new methods, theories,
and models. Examples from statistical scence, core math-
ematics, and applied mathematics imustrate these changes,
which have both broadened and enriched the relation
between mathematics and scence. No longer just the
study of number and space, mathematical science has
become the science of patterns, with theory built on
relations among patterns and on applications derived
from the fit between pattern and observation.

M j - ODERN MATHEMATICS JUST MARKED ITS 300TH BIRTH-

day. The publication in 1687 of Newton's Principia
v fMathematwca established mathematics as the methodolog-

ical paradigm of theoretical science. Newton perceived patterns in
the accumulated astronomical data of his time; he abstracted from
these patterns certain general principles (whence Princpia); then he
used these principles to deduce patterns both known and unknown
in the behavior of planetary bodies. His was a science of patterns-
rooted in data, supported by deduction, confirmed by observation.
By the end of the 19th century, Newton's creation had flowered

magnificently, producing unprecedented intellectual blossoms. Eu-
ropean giants such as Euler, Lagrange, and Weierstrass had elaborat-
ed and refined the calculus, establishing the foundations for modern
analysis. James Clerk Maxwell used Newton's derivatives to write
the laws of electromagnetism, and Georg Bernhard Riemann ap-
plied differentials to geometry in apt (albeit unintentional) prepara-
tion for Albert Einstein, who soon would discover in Riemannian
geometry the key to a general theory of gravitation.
At the same time, on a separate continent, the people of the

United States were beginning their second century without mathe-
matical or scientific giants in their midst. Yet in 1888, two centuries
after Princiuia, a few far-sighted individuals founded what is now the
American Mathematical Society, thereby setting in motion a process
that created the world's strongest environment for mathematics
research. In recognition of this anniversary, American mathematics
is now celebrating its 100th birthday.

Forces for Change
Many educated persons, especially scientists and engineers, harbor

an image of mathematics as akin to a tree of knowledge: formulas,
theorems, and results hang like ripe fruits to be plucked by passing
scientists to nourish their theories. Mathematicians, in contrast, see
their field as a rapidly growing rain forest, nourished and shaped by
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forces outside mathematics while contributing to human civilization
a rich and ever-changing variety of intellectual flora and fauna.
These differences in perception are due primarily to the steep and
harsh terrain of abstract language that separates the mathematical
rain forest from the domain of ordinary human activity.
The dense jungle ofmathematics has been nourished for millennia

by challenges of practical applications. In recent years, computers
have amplified the impact of applications; together, computation
and applications have swept like a cyclone across the terrain of
mathematics. Forces unleashed by the interaction ofthese intellectu-
al storms have changed forever-and for the better-the morpholo-
gy of mathematics. In their wake have emerged new openings that
link diverse parts of the mathematical forest, making possible cross-
fertilization ofisolated parts that has immeasurably strengthened the
whole.
Throughout the 20th century, mathematics has grown rapidly on

many fronts. The classical core has remained rooted in the Newtoni-
an mathematics of analysis, a synthesis of algebra and geometry
applied to the study ofhow things change. But even as this core has
expanded under explosive post-World War II growth, it has been
supplemented by major developments in other mathematical sci-
ences-in number theory, logic, statistics, operations research,
probability, computation, topology, and combinatorics, in addition
to algebra, geometry, and analysis.

In each of these subdisciplines, applications parallel theory. Even
the most esoteric and abstract parts ofmathematics-number theory
and logic, for example-are now used routinely in applications (for
example, in computer science and cryptography). Fifty years ago G.
H. Hardy could boast of number theory as the most pure and least
useful part ofmathematics (1); today number theory is studied as an
essential prerequisite to many applications of coding, including data
transmission from remote satellites, protection of financial records,
and efficient algorithms for computation.

In 1960, at a time when theoretical physics was still the central
jewel in the crown of applied mathematics, Eugene Wigner wrote
about the "unreasonable effectiveness" ofmathematics in the natural
sciences: "The miracle of the appropriateness of the language of
mathematics for the formulation of the laws of physics is a wonder-
ful gift which we neither understand nor deserve" (2, p. 14). Indeed,
theoretical physics has continued to adopt (and occasionally invent)
increasingly abstract mathematical models as the logical foundation
for current theories: Lie groups and gauge theories, exotic expres-
sions of symmetry, have joined fermions and baryons as fundamen-
tal tools in the physicist's search for a unified theory of both
microscopic and macroscopic forces of nature.
During this same period, however, striking applications ofmathe-

matics emerged across the entire landscape of natural, behavioral,
and social science. Moreover, applications ofone part of mathemat-
ics to another-of geometry to analysis, of probability to number
theory-provide renewed evidence of the fundamental unity of
mathematics. Despite the ubiquity of connections among problems
in science and mathematics, the discovery of new links retains a
surprising degree of unpredictability and serendipity. Whether
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planned or unplanned, the cross-fertilization between science and
mathematics in problems, theories, concepts, and paradigms has
never been greater than it is now, in the last quarter of the 20th
century. In 1988 one can say with some justification that the
effectiveness of mathematics is even more "unreasonable" than ever
before.

Paralleling the growing power of applications ofmathematics has
been the extraordinary impact of computing. It is ironic but
indisputable that computers were made possible by application of
abstract theories of mathematicians such as Boole, Cantor, Turing,
and von Neumann, theories that just a few decades ago were widely
derided by critics of the "new math" as wild abstractions irrelevant
to practical purposes. It is doubly ironic that the computer is now
the most powerful force changing the nature of mathematics. Even
mathematicians who never use computers may frequently devote
their entire research careers to problems generated by the presence
of computers. Across all parts of mathematics, computers have
posed new problems for research, provided new tools to solve old
problems, and introduced new research strategies.
Although the public often views computers as a replacement for

mathematics, each is in reality a power tool for the other. Indeed,
just as computers provide new opportunities for mathematics, so
also mathematics makes computers so incredibly effective. Mathe-
matics provides abstract models for natural phenomena, as well as
algorithms for implementing these models in computer languages.
Applications, computers, and mathematics form a tightly coupled
system yielding results never before possible and ideas never before
imagined.

The Mathematical Sciences
Rapid growth in the nature and applications of mathematics

means that the Newtonian core-calculus, analysis, and differential
equations-is now just one part of a more diverse mathematical
landscape. Yet most scientists have explored only this original
territory, because that is all that was included in their curriculum in
high school, college, and graduate school. With the exception of
statistics, an old science widely used across all disciplines that has
become largely mathematical during the 20th century, the narrow
Newtonian legacy of analysis is the principal connection between
practicing scientists and the broad mathematical foundations of their
disciplines. The dramatic changes in the mathematical sciences ofthe
last quarter century are largely invisible to those outside the small
community of research mathematicians.
Today's mathematical sciences, like yesterday's Gaul, can be

divided into three parts of roughly comparable size: statistical
science, core mathematics, and applied mathematics. Each of these
three major areas is led (in the United States) by a few thousand
active researchers and receives approximately $50 million in federal
research support annually. Although the boundaries between these
parts overlap considerably, each province has an identifiable charac-
ter that corresponds well with the three stages of the mathematical
paradigm established by Newton: data, deduction, and observation.

Statistical science investigates problems associated with uncertain-
ty in the collection, analysis, and interpretation of data. Its tools are
probability and inference; its territory includes stochastic modeling,
statistical inference, decision theory, and experimental design. Statis-
tical science influences policy in agriculture, politics, economics,
medicine, law, science, and engineering. Advances in instrumenta-
tion and communication (to gather and transmit data) have posed
new challenges to statistics, leading to rapid growth in new methods
and new applications.
Core mathematics investigates properties of number and space,

ideas rooted in antiquity. Its tools are abstraction and deduction; its
edifices include functions, equations, operators, and infinite-dimen-
sional spaces. Within core mathematics are found the traditional
subjects ofnumber theory, algebra, geometry, analysis, and topolo-
gy. After a half-century of explosive specialized growth, core
mathematics is experiencing a renaissance ofrenewed integrity based
on the unexpected but welcome discovery of deep links among its
various components.

Applied mathematics fits mathematical methods to the observa-
tions and theories of science. It is a principal conduit for scientific
ideas to stimulate mathematical innovation and for mathematical
tools to solve scientific problems. Traditional methods of applied
mathematics include differential equations, numerical computation,
control theory, and dynamical systems; such traditional methods are
today being applied in major new areas of applications, including
combustion, turbulence, optimization, physiology, and epidemiol-
ogy. In addition, new tools from game theory, decision science, and
discrete mathematics are being applied to the human sciences where
choices, decisions, and coalitions rather than continuous change are
the apt metaphors for description and prediction.

All attempts to divide mathematics into parts are necessarily
artificial and perpetually in flux: statistical science, core mathemat-
ics, and applied mathematics represent just one of many possible
structures that may help one understand the whole. These divisions
do not represent intrinsic differences in the nature of the discipline
so much as differences in style, purpose, and history; they may more
aptly describe types of mathematicians than types of mathematics.
Others have attempted to portray the nature ofmodem mathematics
in somewhat different terms [see, for example, (3-5)]. What is
important about these labels is that they help focus attention on
certain characteristics of the mathematical sciences, not that they
themselves represent inherent or essential compartments.
One feature that is inherent in mathematics and is essential to

understand its role in science is this: today's mathematical sciences
are very different from what they were a quarter-century ago when
most of today's scientists last studied mathematics. Computers,
applications, and cross-fertilization have combined to transform the
mathematical sciences into an extraordinarily diverse and powerful
collection of tools for science. Without even asking permission,
mathematicians have quite literally rebuilt the foundations of sci-
ence. The work is not finished, but its new shape is sufficiently
visible that all who use mathematics should take the time to explore
its new features.

Statistical Sciences
Both computers and statistics deal with data: what computers

record, transform, and manipulate, statisticians interpret, summa-
rize, and display. This confluence of problem source with problem
solver has radically transformed (some would say restored) statistical
science to a data-intensive discipline. Phenomena described by
traditional statistical distributions (normal, Poisson, and so forth)
represent only a tiny part ofthe enormous quantity ofdata captured
by computers all over the world. Here are three examples of what
the dominance of data has done in the statistical sciences.

Spatial statisti. The increasing use of electronic scanning devices
(for example, in tomography, airborne reconnaissance, and environ-
mental monitoring) has produced an urgent need for sophisticated
analysis of data with inherent spatial structure. Image enhancement,
the visual clarification of blurred images, is the most common
application. Other important tasks include the visual representation
of data to enable an observer to detect hidden patterns and the
statistical compression ofdata in real time to permit efficient storage
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and subsequent analysis without loss of important information.
Research in spatial statistics utilizes a wide variety of mathemati-

cal, statistical, and computational techniques. Problems of separat-

ing signal from noise borrow techniques from engineering; ill-posed
scattering problems use methods of numerical linear algebra;
smoothing of data requires statistical techniques of regularization.
And underlying all this is the inherent geometry of the problem,
which in many cases is dynamic and nonlinear.
Nonparametnc modeling. The most fully developed part of tradi-

tional statistics involves models based on assumed distributions
determined by a small number of continuously varying parameters.
Yet most real data (for example, census information or satellite
imaging) are a mixture of variables that are partly parametric and
partly nonparametric or partly continuous and partly discrete.
Without plausible a priori assumptions concerning the distribution
of nonparametric data, traditional statistical methods were often
unreliable-although still frequently used. Now, however, large
data sets of mixed parametric and nonparametric variables make it
possible for statisticians to use computationally intensive methods to
estimate statistics (for example, regression coefficients) with reliable
error bounds for nonparametric variables. (Of course, the computer
has made such methods not only possible but necessary by enabling
science to inundate us with massive data sets.)

Bootstrap and jackknife statistics. Many applications of statistics
(notably survey analysis and clinical data from innovative medical
protocols) involve small data sets from which one would like to infer
meaningful ("significant") patterns. Bradley Efron at Stanford Uni-
versity has pioneered an innovative method of using limited data to
generate more data with the same statistical characteristics (whence
"bootstrap" methods).

In particular, bootstrap methods use computational methods to
resample the given data repeatedly in order to generate millions of
similar possible data sets, which yield accurate approximations to
various complex statistics. By comparing the value ofthese statistics
for the given sample with the distribution obtained by repeated
resampling, one can determine whether the observed values are

significant (6). Jackknife methods are related to bootstrap tech-
niques, but the way they reduce bias in the statistical procedures is to
repeatedly slice away part of the data.

Core Mathematics
The forces that impinge on mathematics-primarily applications,

computers, and cross-fertilization-influence the core ("pure") parts
of the subject in profound ways. To illustrate the nature of the
changes, I will use two rather different areas of impact, computation
and geometry, as widely separated mileposts along a vast continuum
of mathematics.
Core mathematics has changed under the influence of computers

as much as the more applied areas of the mathematical sciences, but
in different ways. Most noticeable is the shift in research interests to

questions motivated by computation. But computers have also
changed the way conjectures are invented and tested, the way proofs
are discovered, and-in an increasing number of cases-the nature
of proof itself.
The archetype event in computer-assisted mathematics was the

1976 proof of the century-old four-color conjecture, which was

based on a computer analysis of thousands of reduction patterns to
bridge a gap between mathematical theory and human analysis of
cases. This event shook the very epistemology ofmathematics (7, 8).
Ten years later, in 1986, the Intemational Congress of Mathemati-
cians set forth the state of worldwide mathematics at a 10-day
conference at the University of California at Berkeley. Of the 16
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plenary lectures surveying the current state of mathematics, more
than halfwere on topics linked in some way with computation. Here
are some examples.
Biberbach conjecture. Louis de Branges of Purdue University

discussed his proof of the 70-year-old Bieberbach conjecture con-
cerning the size of coefficients in the power series expansions of
certain analytic functions of a complex variable (9). At a crucial stage
in the proof, de Branges had reduced the entire argument to
verifying an inequality between two polynomials: this was done by
computer to a sufficient degree to provide convincing circumstantial
evidence ofthe validity of this line of argument. The final link in the
formal argument was supplied by a theoretical proof of this
inequality, actually known and proved in the theory of special
functions long before de Branges needed it.

Factoring integers. Henrick W. Lenstra of the University of
Amsterdam applied algebraic geometry to one of the oldest prob-
lems in mathematics-how to find the prime factors of an integer
(10). Integer factorization moved from a backwater to high priority
in mathematics simply because of its application in computer-based
cryptography: a code based on the product of two large prime
numbers cannot be broken with current algorithms because there is
no known efficient method of recovering the two factors from
knowledge only of the product.

Lenstra attacked the problem offactoring by using elliptic curves,
the set of zeroes in a suitable projective plane of cubic polynomial
equations in three variables. Points on these curves form an Abelian
group, whose properties lead directly to the fastest algorithm yet
discovered for factoring large numbers. Similar analyses are being
carried out for factoring polynomials efficiently (11). Elliptic curves,
the primary tool in these new algorithms, are the central objects
involved in Gerd Faltings's 1983 proof of the Mordell conjecture
(12), surely one of this decade's most stunning mathematical
achievements.
Cmputational compklxity. Arnold Sch6nhage of the University of

Tubingen applied the theory of computational complexity-the
analysis of the inherent difficulty in solving problems-to the basic
task of solving equations, beginning with the simplest, ax = b, for
ordinary numbers (13). The traditional solution, division, has not
been of interest to mathematicians since the Middle Ages, yet now it
is a subject of intense research. Only recently has it been proved that
the known methods of performing division of complex numbers is
the best way possible-in the sense that no method can involve
fewer real arithmetical operations. The methods used in this funda-
mental analysis of arithmetic presage similar analysis for the entire
range of computer algorithms, enabling mathematicians to deter-
mine limits of computational feasibility as well as areas ripe for
further improvement.

Itfrated maps. Stephen Smale of the University of California at
Berkeley examined the classical problem offinding zeroes ofpolyno-
mials in the very modern context ofiterated maps and computation-
al complexity theory. The prototypical example is Newton's method
for finding a zero of a functionfJx):

Xn+ = Xn-f(xn)/f (Xn)
In the pre-computer style, this method was applied one point at a
time, beginning with a reasonably good guess so that the sequence
of points converged rapidly to a zero of the function.

Smale studied Newton's method globally, looking at the mapping
of the entire complex plane onto itself generated by Newton's
method for a particular polynomial (14). The distribution of points
that eventually map to zero is an example of a "fractal" set that
displays many of the chaotic properties typical of turbulence.
Smale's analysis applied global iteration to the simplex method of
solving linear programming problems, leading to a proof of the
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empirical fact that, on average, the simplex method behaves very
well indeed. His methods also lead directly to new models for chaos
that have extensive applications in physics and chemistry (15, 16).

Geometry
If computers typify the modern era of mathematics, geometry

epitomizes its classical roots. Historically, geometry, the study of
space, has been one of the major pillars of core mathematics. For
various reasons, its role in the mathematics curriculum has declined
over the past 20 years, so that even those with university degrees in
mathematics often have little acquaintance with geometry beyond an
archaic and typically rigid encounter with Euclidean proofs in high
school geometry. In sharp contrast to this curricular decline is the
renaissance of geometry in research mathematics. In a very real
sense, geometry is once again playing a central role on the stage of
mathematics, much as it did in the Greek period.
A principal actor in the study in modern geometry is a "mani-

fold," a term used by geometers to describe surfaces and spaces that
are locally like Euclidean space. Manifolds form the natural locus for
solutions to differential equations, and in turn their geometry
imposes structure on the analytic nature of these solutions. Thus
manifolds are of importance not just to geometry but to all parts of
classical analysis.
Two of the three 1986 Fields Medals-the "Nobel prizes" of

mathematics-went to Michael Freedman of the University of
California at San Diego and Simon Donaldson ofOxford University
for work in the geometry of four-dimensional manifolds (17).
Freedman showed that the Poincare conjecture concerning spheres
is true for four-dimensional manifolds, thereby resolving the next-
to-last case of this 80-year-old conjecture. (Only dimension three
remains unsettled.) Freedman's methods showed that the topologi-
cal classification offour-dimensional manifolds mimics the algebraic
dassification of quadratic forms.
Donaldson used the Yang-Mills field equations of mathematical

physics, themselves generalizations ofMaxwell's equations, to study
instantons in four-dimensional space, thereby reversing tradition by
applying methods from physics to the understanding of pure
mathematics. By exploiting those properties ofdifferential equations
that reflect the wave-particle duality of matter, Donaldson was able
to develop an entirely new approach to the study of fundamental
problems of geometry.
One consequence of Freedman's and Donaldson's work was the

discovery that in four dimensions there are differentiable manifolds
that are topologically but not differentiably equivalent to the
standard Euclidean four-dimensional space. Such "exotic" spaces are
unique to dimension four, which also happens to be the natural
domain of the space-time continuum of our physical world. Wheth-
er these unique properties are accidental or significant is something
that will require much further investigation. Indeed, the geometrical
theory created by this work has already led to applications in string
theory, thereby feeding back into physics spinoff benefits of ideas
originally borrowed from physics.

Cotputer graphics. Geometry and computers intersect in one of
the most lively and attractive interstices of the mathematical sci-
ences: computer graphics. Although most well-known uses of
computer graphics are in areas of applied mathematics, visual
techniques are making a real impact in traditional core mathematics
as well as in the teaching of mathematics at all levels.
To produce realistic graphics on a computer requires considerable

tieoretical interaction among geometrical representation, algebraic
encoding, and computer algorithms. In return, computer graphics
methods have provided crucial assistance in many mathematics
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problems: new minimal surfaces have been found with the aid of
computer graphics, and the visual displays of iterative maps (in the
widely known "fractal" pictures) make visible patterns that would
never have been noticed by analytic means alone. Fractal patterns
have provided an apt description of a large class of physical
phenomena, ranging from fracturing of glass to texture in surfaces
(18-20).
Geometric computing is beginning to prove very useful also in

core areas of mathematics remote from geometry, because super-
computers can calculate and display in visual form roots ofequations
and other mathematical objects. This enables mathematicians for the
first time to "see" the content of the abstract theorems they prove
and thereby to make new conjectures suggested by the eye rather
than by the mind. (In recognition ofthis new frontier, several ofthe
world's leading geometers have recently received funding to estab-
lish a Geometry Supercomputer Project to carry out research in this
area in both the United States and Europe.)

Applied Mathematics
Applied mathematics is distinguished from core mathematics not

so much by content or method as by objective: in applied mathemat-
ics, value is measured by the degree to which new methods improve
scientific understanding or technological applications.
The roots of the scientific revolution lie in the introduction by

Galileo of empirical methods to replace the speculative explanations
of classical Greek natural philosophy. Newton introduced theoreti-
cal science by showing that empirical data can be explained by
mathematical results deduced from basic axioms. In our time, John
von Neumann pioneered the computational paradigm in which the
results of theoretical science are used to simulate reality on a modern
computer. As a consequence, computational methods now pervade
all aspects of applied mathematics (21, 22).

Necessity is the mother of invention, in mathematics as in life.
Because the needs ofscience stimulate the growth ofmathematics, as
science expands and grows so does mathematics. The consequence
has been an explosive growth in the nature and range of applied
mathematics. Four very different areas will serve to illustrate both
the diversity and the innovation of present research.

Biologcal scws. Nothing better iUustrates the potential for
mathematics in the biological sciences than the many traces of
mathematics behind the Nobel prizes (23). For example, the 1979
Nobel Prize in medicine was awarded to Allan Cormack for his
application of the Radon transform, a well-known technique from
advanced classical analysis, to the development of tomography and
computer-assisted tomography (CAT) scanners. One of the recipi-
ents of the 1985 Nobel Prize in chemistry was biophysicist Herbert
Hauptman, who took his Ph.D. in mathematics and who is presi-
dent ofthe Medical Foundation of Buffalo. Hauptman was cited for
fundamental work in Fourier analysis pertaining to x-ray crystallog-
raphy.

Indeed, recent research in the mathematical sciences suggests
dramatically increased potential for fundamental advances in the life
sciences with methods that depend heavily on mathematical and
computer models. Structural biologists have become genetic engi-
neers, capturing the geometry ofcomplex macromolecules in super-
computers and then simulating interaction with other molecules in
their search for biologically active agents. Using these computation-
al methods, biologists can portray on a computer screen the
geometry of a cold virus-an intricate polyhedral shape of uncom-
mon beauty and fascinating geometric features-and search its
surface for molecular footholds on which to secure their biological
assault.
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Geneticists are beginning the monumental effort to map the entire
human genome, an enterprise that requires expertise in statistics,
combinatorics, artificial intelligence, and data management to or-

ganize billions of bits of information coming from all over the
world. Ecologists, the first mathematical biologists, continue to use

the extensive theories of population dynamics to predict the behav-
ior and interaction of species, taking into account such realistic
complications as sex-specific mortality, reproductive biology, and
predator-prey data. Neurologists now use the theory of graphs to

model networks of nerves in the body and the neural tangle in the
brain. And, finally, physiologists use contemporary algorithms
applied to 19th-century equations of fluid dynamics to determine
such things as the effects of turbulence in the blood caused by
swollen heart valves or clumps of cholesterol.

Comtrol theory. One of the most widespread uses of mathematical
techniques is in the control of systems; applications range from
quality control on an assembly line to flight control of a high-
performance aircraft. Control theory is one ofthe many mathemati-
cal products of World War II, and until recently it has been
dominated by the original paradigm of a single input-single output

system that can be represented mathematically as a single-valued
function of one variable. Such models are sufficiently simple to

permit an experienced engineer to optimize system performance by
adjusting parameters in the model by trial and error.

However, the advent of computer-controlled systems has opened
up a new and very complex frontier ofsystems with many inputs and
many outputs. The prototypical example of enormous complexity
for such systems is the design of very large scale integrated circuits.
The problem of finding efficient control laws for such systems has
been approached by means of the Kalman digital filter and, more

recently, by an extension of interpolation theory to matrix-valued
analytical functions and to a full calculus of operators.

One benefit ofthe new theories has been to increase the flexibility
of control system design. Instead of being restricted to traditional
methods introduced by Norbert Weiner that minimized mean

square error, designers can choose, with these new systems, to

minimize worst case errors. Such options are of crucial importance
when prevention offailure (for example, in nuclear power plants or

in aircraft control) is ofprimary importance. Such benefits will come
as circuit design shifts from scalar to matrix patterns, based on

highly sophisticated mathematical theories of interpolation.
The availability of computers to carry out complex calculations

has opened up many additional frontiers in control theory. For
example, the theoretical basis for reconstructng an optimal signal
from distorted versions received by multiple detectors uses tech-
niques from the theory of analytic functions in several complex
variables. New projective (Karmarkar-like) algorithms for linear
programming have made possible automated control of rapid
processes (for example, high-performance aircraft) not previously
possible. Certain nonlinear control problems, such as the motion of
an airplane while engaged in short landing and takeoff, can often be
transformed via Lie algebras into a linear feedback law that can then
be computed with the use of traditional methods that are both
computationally stable and sufficiently simple to carry out in real
time.

Stochastic differential equatns. The laws of nature are expressed
most eloquently in the language of differential equations. Maxwell's
equations for electromagnetic fields, Newton's equations for plane-
tary motion, and Navier-Stokes equations for fluid flow are as

articles in nature's constitution. They express the way nature

changes in terms that make possible both mathematical analysis and
scientific investigation.
But in practice, the data available to a scientist are never known

exactly and may be subject to significant random variations. In some
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cases, key variables are totally unknown or are obscured by noise. A
common case, represented mathematically by what are known as
stochastic differential equations, occurs when the system is subject to
external white noise. Typical examples indude diffusion processes in
communication theory, chemical processes, stock market analyses,
epidemiology, queueing theory, and population genetics.
AU these examples share certain common features. Most impor-

tant, like a fair coin whose probability of heads does not depend on
the outcome of previous tosses, they are processes without a
memory of the past. In mathematical jargon, they are what are
known as Markov processes. In addition, they are subject to random
influence of key variables-whence the stochastic nature of the
problem.

Stochastic differential equations are one of the key areas of
probability theory. Recent research has yielded important links to
other parts of mathematics. In particular, certain statistics of the
stochastic systems (for example, mean exit times of a diffusion
process) turn out to be solutions of ordinary (nonstochastic) partial
differential equations. This in turn has yielded interesting insights
linking random processes in one system with geometry and analysis
in another, notably mathematical physics.
The behavior of the solar system under the random influence of

passing comets and stars is an example of a dynamical system
governed by a stochastic differential equation. Since random distur-
bances may destabilize dynamical systems (even if the disturbances
are small), the investigation of stability is a matter of utmost
importance. Only recently have researchers been able to determine
conditions under which the trajectories of solutions to stochastic
flows will cluster in stable patterns. [Some researchers think the
stock market is subject to the same types of instability, in which
behavior near a "strange attractor" can lead to sharp oscillations that
are inherently unpredictable (24).]

Phyics. Reconciling quantum field theory with general relativ-
ity-the physics of the small with the physics of the large-is
perhaps the major theoretical problem in physics. Because of the
enormous difference in scale between gravitational effects and
quantum effects, realistic experiments are oflittle value in suggesting
avenues for exploration.
The leading current attempt at reconciliation ofmicrocosmic with

macrocosmic physics is the theory of strings, a construct in which
the dimensionless points of four-dimensional space-time are re-
placed by thin strings in ten dimensions, where the intrinsic
structure ofthe extra dimensions, like that ofwhat we perceive to be
"empty" space, occurs at a scale too small for our perception. Pursuit
of this hypothesis (which can probably never be tested by experi-
ment) leads naturally to higher dimensional symmetries in which are
embedded the special symmetries, the fundamental invariants, of
both macro- and microscopic physics (25).
Knot theory. Fifty years ago mathematicians developed the theory

of operators, motivated in part by the need to find mathematical
models of quantum mechanics. Operator theory flourished as a
branch of functional analysis, which was pursued both for its pure
mathematical interest and for its continued applicability to quantum
physics. In recent years, investigation of new types of operators
yielded new methods of classification that in turn have led to the
discovery of important relations between operator algebras and the
dassification of knots, a vexingly difficult problem that had previ-
ously defied all attempts at solution.
The key to classification of knots is a scheme to encode knot

patterns in algebraic terms so that algebraic manipulations corre-
spond to physical actions on the knot (26, 27). This makes it
possible, for the first time, to determine whether one knot can be
transformed into another or unlinked completely into a straight line.
Underlying both the new types of operators and the new classifica-
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tion of knots is a new algebraic structure whose characteristics were
revealed by its appearance in knot groups, in certain areas of
statistical mechanics, and in exactly solvable models. As happens so
often in mathematics, the significance of the new structure emerged
in recognition of its ubiquity: that the same pattern appeared in
several places is precisely why the technique takes on special
power.

Recently biologists studying the replication ofDNA have teamed
up with mathematicians working in knot theory because DNA in
the cell is normally coiled into a tight knot. How DNA can replicate
and then pull apart if it is tightly knotted is difficult to imagine-like
the magician's trick of effortlessly separating two intertwined rope
knots. From motivation and application in quantum mechanics
through esoteric research in pure mathematics and then to the
unfolding ofDNA is an amazing, albeit not atypical, example of the
many interconnections among diverse parts of mathematics.

among subdisciplines of mathematics.
Because of computers, we see more than ever before that mathe-

matical discovery is like scientific discovery. It begins with the search
for pattern in data-perhaps in numbers, but often in geometric or
algebraic structures. Generalization leads to abstraction, to patterns
in the mind. Theories emerge as patterns of patterns, and signifi-
cance is measured by the degree to which patterns in one area link to
patterns in other areas. Subtle patterns with the greatest explanatory
power become the deepest results, forming the foundation for entire
subdisciplines.
Texas physicist Steven Weinberg, echoing Harvard mathemati-

cian Andrew Gleason, suggests that the reason why mathematics has
the uncanny ability to provide just the right pattems for scientific
investigation may be because the patterns investigated by mathema-
ticians are all the patterns there are (23). If patterns are what
mathematics is all about, then the "unreasonable effectiveness" of
mathematics may not be so unreasonable after all.

Patterns
These examples from contemporary mathematical science illus-

trate metaphors of the mathematical method that originated 300
years ago in the Newtonian synthesis: data, deduction, and observa-
tion. They also reveal the effects ofthe major forces for change in the
mathematical sciences: computers, applications, and cross-fertiliza-
tion. Hundreds of other examples could have illustrated the same

points; those chosen here are neither the deepest nor the most
important. They do suggest, however, the variety and scope of
today's mathematics.
Mathematics is often defined as the science of space and number,

as the discipline rooted in geometry and arithmetic. Although the
diversity of modern mathematics has always exceeded this defini-
tion, it was not until the recent resonance of computers and
mathematics that a more apt definition became fully evident.
Mathematics is the science of patterns. The mathematician seeks

patterns in number, in space, in science, in computers, and in
imagination. Mathematical theories explain the relations among
patterns; functions and maps, operators and morphisms bind one

type of pattern to another to yield lasting mathematical structures.
Applications of mathematics use these patterns to "explain" and
predict natural phenomena that fit the patterns. Patterns suggest
other patterns, often yielding patterns of patterns. In this way
mathematics follows its own logic, beginning with patterns from
science and completing the portrait by adding all patterns that derive
from the initial ones.

To the extent that mathematics is the science ofpattems, comput-
ers change not so much the nature of the discipline as its scale:
computers are to mathematics what telescopes and microscopes are

to science. They have increased by a millionfold the portfolio of
pattems investigated by mathematical scientists. As this portfolio
grows, so do the applications of mathematics and the cross-linkages
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