
Living with a New Mathematical Species

The history of mathematics can be viewed as a coun-
terpoint between the finite and the infinite, between
the discrete and the continuous. Although rooted in
geometry, Greek mathematics was primarily finite,
concrete, and specific. Modern mathematics, in con-
trast, is infinite, abstract, and general. Aristotle in-
veighed against the actual infinite, reflecting the Greek
cultural distaste for the incomplete form. Centuries
later, Leibniz and Newton overcame Aristotelean
scruples in proposing methods of calculating with in-
finitesimals. Now, after three hundred years of New-
tonian mathematics, computers are forcing a return to
mathematical preferences of the pre-Newtonian age-
to the finite, the specific, and the concrete

This return to our roots is a natural consequence of
increasing mathematical maturity. Weierstrass re-
solved the paradox of infinitesimals by reducing anal-
ysis to arithmetic; he showed how to interpret the infi-
nite concepts of calculus in terms of the finite struc-
tures of arithmetic. Twentieth century mathematics
has been dominated by the Weierstrass synthesis-a
working intellectual compromise between the finite
limitations of human mental processes and the infinite
visions of human imagination.

Today we are forging a new compromise-or in
Thomas Kuhn's terms, a new paradigm-binding
computers with mathematics. Computers are both the
creature and the creator of mathematics. They are, in
the apt phrase of Seymour Papert, "mathematics-
speaking beings." More recently J. David Bolter in his
stimulating book Turing's Man [4] calls computers
"embodied mathematics." Computers restore the spe-
cific and concrete to the ethereal world of mathe-
matics, yet their very existence depends in crucial
ways on the abstract and the theoretical. Although
computers would never have been invented without
the theoretical support of abstract, continuous New-
tonian mathematics, both computer architecture and
computer science depend primarily on finite and dis-
crete methodology. Bolter describes the situation more
colorfully: "The computer specialist has as little use for
irrational numbers as the Pythagoreans had" [4, p.
641.

Computers shape and enhance the power of mathe-
matics, while mathematics shapes and enhances the
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power of computers. Each forces the other to grow
and change. Despite the weight of tradition, mathe-
matics curricula and pedagogy must also change to re-
flect this new reality.

The Ecology of Mathematics

Until recently, mathematics was a strictly human en-
deavor. It evolved with human society, achieving a
degree of universality equalled by few other aspects of
human culture. Its ecology was a human ecology,
linked closely to science and language, evolving as

human science and language changed.
But suddenly, in a brief instant on the time scale of

mathematics, a new species has entered the mathe-
matical ecosystem. Computers speak mathematics,
but in a dialect that is difficult for some humans to
understand. Their number systems are finite rather
than infinite; their addition is not commutative; and
they don't really understand "zeto," not to speak of
"infinity." Nonetheless, they do embody mathe-
matics.

Many features of the new computer mathematics
appear superficial: notation such as ^ and ** for ex-
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ponentiation, linearized expressions for formulas tra-
ditionally represented by a two-dimensional layout, a

preference for binary, octal, or hexadecimal represen-
tations of numbers, and in early languages a new ac-
tion-oriented meaning to the "equals" sign. Some vari-
ances are more significant, and more difficult to assim-
ilate into traditional mathematics: finite number
systems, interval arithmetic, roundoff errors, compu-
tational intractability.

As mathematics goes, linguistic and notational
changes are truly superficial-it really is the same
subject modulo an isomorphism. These differences
can be very confusing to students learning mathe-
matics and computing, although perhaps no more so
than the differences in vocabulary and perspective be-
tween an engineer and a mathematician. The blend of
computer language and traditional mathematics pro-
duces a kind of Franglais decried by purists yet em-
ployed by everyone.

The core of mathematics, however, is also changing
under the ecological onslaught of mathematics-
speaking computers. New specialties in computational
complexity, theory of algorithms, graph theory, and
formal logic attest to the impact that computing is
having on mathematical research. As Arthur ]affe has
argued so well in his recent essay "Ordering the Uni-
verse" [12], the computer revolution ls a mathematical
revolution. The intruder has changed the ecosystem of
mathematics, profoundly and permanently.

New Mathematics for a New Age

Computers are discrete, finite machines. Unlike a

Turing machine with an infinite tape, real machines
have limits of both time and space. Theirs is not an
idealistic Platonic mathematics, but a mathematics of
limited resources. The goal is not just to get a result,
but to get the best result for the least effort. Optimiza-
tion, efficiency, speed, productivity-these are essen-
tial objectives of modern computer mathematics.
Questions of optimization lead to the study of graphs,
of operations research, of computational complexity.

Computers are also logic machines. They embody
the fundamental engine of mathematics-rigorous
propositional calculus. So it comes as no surprise that
computer programs can become full partners in the
process of mathematical proof. The first celebrated
computer proof was that of the four-color theorem: the
computer served there as a sophisticated accountant,
checking out thousands of cases of reductions. Despite
philosophical alarms that computer-based proofs
change mathematics from an a priori to a contingent,
fallible subject (see, e.9., l27l), careful analysis reveals
that nothing much had really changed. The human
practice of mathematics has always been fallible; now
it had a partner in fallibility.

Recent work on the mysterious Feigenbaum con=
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stant reveals just how far this evolution has pro-
gressed in just eight years: computer-assisted investi-
gations of families of periodic maps suggested the
presence of a mysterious universal limit, apparently
independent of the particular family of maps. Subse-
quent theoretical investigations led to proofs that are
true hybrids of classical analysis and computer pro-
gramming: the crucial step in a fixed-point argument
requires a tight estimate on the norm of a high degree
polynomial. This estimate is made by a computer pro-
gram, carefully crafted using interval arithmetic to ac-
count in advance for all possible inaccuracies intro-
duced by roundoff error [8]. Thus computer assisted
proofs are possible not just in graph theory, but also in
that bastion of classical mathematics-functional anal-
ysis.

Computers are also computing machines. By ab-
sorbing, transforming, and summarizing massive
quantities of data, computers can simulate reality. No
longer need the scientist build an elaborate wind
tunnel or a scale model refinery in order to test engi-
neering designs. Wherever basic science is well under-
stood, computer models can emulate physical pro-
cesses by carrying out instead the process implied by
mathematical equations. Mathematical models used to
be primarily tools used by theoretical scientists to for-
mulate general theories; now they are practical tools of
enormous value in the everyday world of engineering
and economics. They focus mathematical attention on
the relation between data and theory, on stochastic
processes and differential equations, on data analysis
and mathematical statistics.

In many respects mathematics has become the crea-
ture of the computer: by providing compelling tools in
combinatorics, logic, and calculation, the computer
has made an offer of intellectual adventure that math-
ematicians cannot refuse. But in a very real sense,
mathematics is also the creator of the computer. David
Hilbert's struggle with the foundations of mathe-
matics-itself precipitated by the paradoxes of set
theory elucidated by Frege and Russell-led directly
to Alan Turing's proposal for a universal machine of
mathematics:

[Turing] proved that there was no 'miraculous machine'
that could solve all mathematical problems, but in the
process he had discovered something almost equally mi-
raculous, the idea of a universal machine that could take
over the work of any machine. He argued that anything
performed by a human computer could be done by a ma-
chine. [11, p. 109]

It has been fifty years precisely since Turing devel-
oped his scheme of computabllity [26] in which he ar-
gued that machines could do whatever humans might
hope to do. His was a formal, abstract system, devoid
of hardware and real machines. It took 25 years for
rudimentary machines to demonstrate in a productive
way the genius of Turing's idea.



During that same period abstract mathematics flour-
ished, led by Bourbaki, symbolized by the "general-
ized abstract nonsense" of category theory. But with
abstraction came power, with rigor came certainty.
Once real computers emerged, the complexity of pro-
grams quickly overwhelmed the informal techniques
of backyard programmers. Formal methods became de

rigueur; even the once-maligned category theory was

enlisted to represent finite automata and recursive
functions:

A quite formalistic approach is now both feasible and de-
sirable, and nowhere is the transition of programming
from art to science made more evident. One result of this
more formal, disciplined approach . . . is a sharp reduc-
tion in the programming effort needed to implement a

compiler. 12, p. anl

Once again, as happened before with physics, mathe-
matics became more efficacious by becoming more ab-

stract.

The Core of the Curriculum

The circumstances that make computing a force for
rapid evolution in the notation and practice of mathe-
*iti.r also put pressure on the mathematics curric-
ulum in colleges and universities. The presence of a

new and vigorous subject such as computer science

produces enormous strains on faculty, curriculum,
and resources. As different ecosystems respond in dif-
ferent ways to the presence of a new predator, so dif-
ferent institutions are responding in different ways to
the incursion of computer science into the undergrad-
uate curriculum.

Twenty years ago in the United States the Com-
mittee on the Undergraduate Program in Mathematics
(CUPM) issued a series of reports that led to a gradual
standardization of curricula among undergraduate
mathematics departments [5]. Following two years of
calculus and linear algebra, students took core courses

in real analysis and abstract algebra (usually two
apiece) and selected electives from among such op-
tions as topology, differential equations, geometry,
complex analysis, number theory, probability, and
mathematical statistics. While the faculty expectations
and student performance on these courses varied
greatly from institution to institution, consensus on a
central core was always present.

The subsequent decade was good to mathematics
education. The number of bachelor's degrees in the
United States rose to about 25,000; the number of
Ph.D.s rose gradually from the low hundreds to over
1200. But while core mathematics was experiencing a

renaissance, those exploring the frontiers detected evi-
dence of coming change.

In 1977 Garrett Birkhoff and |. Barkley Rosser pre-
sented papers at a meeting of the Mathematical Asso-

ciation of America concerning their predictions for un-
dergraduate mathematics in 1984. Birkhoff urged in-
creased emphasis on modelling, numerical algebra,
scientific computing, and discrete mathematics ("a
course introduced over 10 years ago at Harvard by
Howard Aiken while director of our computation labo-
ratory"). He also advocated increased use of computer
methods in pure mathematics:

To my mind the use of computers is analogous to the use
of logarithm tables, tables of integrals, or carefully
drawn figures. Far from muddying the limpid waters of
clear mathematical thinking, they make them more trans-
parent by filtering out most of the messy drudgery which
would otherwise accompany the working out of specific
illustrations. Moreover, they give a much more adequate
idea of the range to which the ideas expressed are appli-
cable than could be given by a purely deductive general
discussion unaccompanied by carefully worked out ex-
amples.

Therefore, I believe that [computer-based] courses should
be considered as basic courses in pure mathematics, to be
taken by all students wishing to understand the power
(and limitations) of mathematical methods. 13, p. 65Il

Rosser emphasized many of the same points, and
warned of impending disaster to undergraduate math-
ematics if their advice went unheeded:

Unless we revise the calculus course and the differential
equations course and probably the linear algebra course
. . so as to embody much use of computers, most of the
clientele for these courses will instead be taking computer
courses in 1984. . . . If students cannot acquire the neces-
sary computer proficiency and understanding in their
mathematics courses, they will have no choice but to take
computer courses instead. 121, p. 6391

In the decade since these words were written, U.S.
undergraduate and graduate degrees in mathematics
have declinedby 50%. New courses in modelling, dis-
crete mathematics and data analysis are emerging in
every college and university. The clientele for tradi-
tional mathematics has indeed migrated to computer
science. The former CUPM consensus is all but shat-
tered.

The symbol of reformation has become discrete
mathematics. Several years ago Anthony Ralston ar-
gued forcefully the need for change before both the
mathematics community [17] and the computer
science community [18]. Discrete mathematics, in Ral-
ston's view, is the central link between the fields. Col-
lege mathematics must introduce discrete methods
early and in depth; computer science curricula must,
in turn, require and utilize mathematical concepts and
techniques. The advocacy of discrete mathematics rap-
idly became quite vigorous (see, e.g., [19] and [24]),
and the Sloan Foundation funded experimental cur-
ricula at six institutions to encourage development of
discrete-based alternatives to standard freshman cal-
culus.
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Five years ago CUPM issued a new report, this one
on the Undergraduate Program in Mathematical
Sciences [6]. Beyond calculus and linear algebra, they
could agree on no specific content for the core of a

mathematics major: "There is no longer a common
body of pure mathematical information that every stu-
dent should know. Rather, a department's program
must be tailored according to its perception of its role
and the needs of its students." The committee did
agree that students need to learn to think mathemati-
cally and to study some mathematical subject in
depth. But they could not agree, for example, that
every mathematics major needs to know real analysis,
or group theory,. or any other topic formerly part of
the advanced core of the major.

The niche of mathematics in the university eco-
system has been radically transformed by the presence
of computer science in the undergraduate curriculum.
As each institution reacts to particular local pressures
of staff resources and curriculum tradition, the under-
graduate mathematics major has disintegrated into
countless local varieties.

Despite the pressure for radical change, the mo-
mentum of tradition still permits the strongest mathe-
matics departments to continue the traditional CUPM
major for a declining number of students. Reduced en-
rollment does make it difficult, however, to provide
advanced core mathematics courses on a regular basis.
In larger institutions, computer science operates as a
parallel program, almost always attracting large enroll-
ments, including some of the best and brightest stu-
dents on campus. It is not uncommon for undergrad-
uate majors in computer science to outnumber mathe-
matics majors by ratios of 20:7 or more.

At smaller institutions a different pattern has
emerged. Many such departments have been forced to
drop regular offerings of such former core courses as

topology, analysis and algebra. Where resources do
not permit full majors in mathematics and computer
science, the mathematics program often becomes a

hybrid major consisting of some computer science,
some mathematics, and some statistics-introduc-
tions to everything, mastery of nothing.

The need for consensus on the contents of under-
graduate mathematics is perhaps the most important
issue facing American college and university mathe-
matics departments. On the one hand departments
that have a strong traditional major often fail to pro-
vide their students with the robust background re-
quired to survive the evolutionary turmoil in the
mathematical sciences. Like the Giant Panda, they de-
pend for survival on a dwindling supply of bamboo-
strong students interested in pure mathematics. On
the other hand, departments offering flabby com-
posite majors run a different risk: by avoiding ad-
vanced, abstract requirements, they often misrepre-
sent the true source of mathematical knowledge and
power. Like zoo-bred animals unable to forage in the
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wild, students who have never beeft-iequired to
master a deep theorem are ill-equipped to master the
significant theoretical complications of real-world
computing and mathematics.

Computer Literacy

Mathematical scientists at American institutions of
higher education are responsible not only for the tech-
nical training of future scientists and engineers, but
also for the technological literacy of laymen-of future
lawyers, politicians, doctors, educators, and clergy.
Public demand that college graduates be prepared to
live and work in a computer age has caused many in-
stitutions to introduce requirements in quantitative or
computer literacy. Many educators are calling for a

total reform of liberal education.
In 1981 Stephen White, a program officer with the

Alfred P. Sloan Foundation, initiated debate on the
proper role of applied mathematics and computer ex-
perience in the education of students outside the tech-
nical fields. He termed these "the new liberal arts:"

The ability to cast one's thoughts in a form that makes
possible mathematical manipulation and to perform that
manipulation, coupled with the fruits of that analysis, are
modes of thought. . . . In making use of those modes of
thought one may think with enormous new efficiency.
But it is thinking itself that is the creative element:
thoughtless modelling and thoughtless computation, im-
pressive as they may be, are devoid of real significance.
. . . It is precisely as modes of thought that they become
essential in higher education, and above all in liberal edu-
cation [14, p. 6].

Others echoed this call for reform of liberal education.
David Saxon, President of the University of California
wrote in a Science editorial that liberal education "will
continue to be a failed idea as long as our students
are shut out from, or only superficially acquainted
with, knowledge of the kinds of questions science can
answer and those it cannot" [22].

Too often these days the general public views com-
puter literacy as the appropriate modern substitute for
mathematical knowledge. Unfortunately, this often
leads students to superficial courses that emphasize
vocabulary and experiences over concepts and prin-
ciples. The advocates of computer literacy conjure
images of an electronic society dominated by the in-
formation industries. Their slogan of "literacy" echoes
traditional educational values, conferring the aura but
not the logic of legitimacy.

Typical courses in computer literacy, however, are
filled with ephemeral details whose intellectual life
will barely survive the students' school years. A best
selling textbook in the United States for courses intro-
ducing computing to nonspecialists is full of glossy
color pictures, but does not even mention the word
"algorithm." These courses contain neither a Shake-



speare nor a Newton, neither a Faulkner nor a

Darwin; they convey no fundamental principles nor
enduring truths.

Computer literacy is more like driver education than
like calculus. It teaches students the prevailing rules of
the road concerning computers: how to create and
save files, how to use word processors and spread-
sheets, how to program in Basic. One can be confident
only that most students finishing such a course will
not injure themselves or others in their first encounter
with a real computer in the workplace. But such
courses do not leave students well prepared for a life-
time of work in the information age.

Algorithms and data structures are to computer
science what functions and matrices are to mathe-
matics. As much of the traditional mathematics curric-
ulum is devoted to elementary functions and matrices,
so beginning courses in computing-by whatever
name-should stress standard algorithms and typical
data structures.

For example, as early as students study linear equa-
tions they could also learn about stacks and queues;
when they move on to conic sections and quadratic
equations, they could in a parallel course investigate
linked lists and binary trees. The algorithms for
sorting and searching, while not part of traditional
mathematics, convey the power of abstract ideas in di-
verse applications every bit as much as do conic sec-

tions or derivatives.
Computer languages can (and should) be studied

for the concepts they represent-procedures in Pas-

cal, recursion and lists for Lisp-rather than for the
syntactic details of semicolons and line numbers. They
should not be undersold as mere technical devices for
encoding problems for a dumb machine, nor oversold
as exemplars of a new form of literacy. Computer lan-
guages are not modern equivalents of Latin or French;
they do not deal in nuance and emotion, nor are they
capable of persuasion, conviction, or humor. Al-
though computer languages do represent a new and
powerful way to think about problems, they are not a
new form of literacy.

As computer science joins mathematics as a basic
ingredient in secondary and higher education, liberal
education must move beyond computer literacy. As
mathematics employs the abstractioirs of algebra and
geometry as tools for problem solving, so courses in
computing must incorporate the abstract structures of
computer science-algorithms, data structures-in a

pragmatic, problem-solving environment. Such com-
puter principles, firmly rooted in mathematics, are a
legitimate and important component of the school and
college curriculum for all students.

Computer Science

The confusion evident in
partments is an order of

university mathematics de-
magnitude less severe than

that which operates in university computer science
programs. In the United States, these programs cover
an enormous spectrum, from business-oriented data
processing curricula, through management informa-
tion science, to theoretical computer science. A1l of
these intersect with the mathematics curriculum, each

in different ways. The computer science community is
now struggling with this chaos, and has a process in
place for identifying exemplar programs of different
types as a first step towards an accreditation system
for college computer science departments.

Several computer science curricula have been devel-
oped by the professional societies ACM and IEEE, for
both large universities and small colleges. Recently
Mary Shaw of Carnegie Mellon University put to-
gether an excellent composite report on the under-
graduate computer science curriculum at CMU, surely
one of the very best available anywhere. This report is
quite forceful about the contribution mathematics
makes to the study of computer science:

The most important contribution a mathematics curric-
ulum can ma[e to computer science is the one least likely
to be encapsulated as an individual course: a deep aPpre-
ciation of ihe modes of thought that characterize mathe-
matics. We distinguish here two elements of mathematical
thinking that are also crucial to computer science . . ' the
duel techniqu es of abstraction and realization and of problem-

solaing. [23, p. 55]

The converse is equally true: one of the more impor-
tant contributions that computer science can make to
the study of mathematics is to develop in students an

appreciation for the power of abstract methods when
applied to concrete situations. Students of traditional
mathematics used to study a subject called "Real and
Abstract Analysis;" students of computer science now
can take a course titled "Real and Abstract Machines."
In the former "new math," as well as in modern al-
gebra, students learned about relations, abstract ver-
sions of functions; today business students study "re-
lational data structures" in their computer courses,
and advertisers tout "fulIy relational" as the latest in-
novation in business software. The abstract theories of
finite state machines and deterministic automata are

reflections in the mirror of computer science of well
established mathematical structures from abstract al-
gebra and mathematical logic.

An interesting and pedagogically attractive example
of the power of abstraction made concrete can be seen

in the popular electronic spreadsheets that are mar-
keted under such trade names as Lotus and VisiCalc.
Originally designed for accounting, they can as well
emulate cellular automata or the Ising model for ferro-
magnetic materials [10]. They can also be "pro-
grammed" to carry out most standard mathematical
algorithms-the Euclidean algorithm, the simplex
method, Euler's method for solving differential equa-
tions[1]"";tT:1,',iJ::,i^T,^ii,:.i,::i;t*:i::::l{f-"3,



applied computing-is a structured form for recursive
procedures-the fundamental tool of algorithmic
mathematics. It is a realization of abstract mathe-
matics, and carries with it much of the power and ver-
satility of mathematics.

Computers in the Classroom

Computers are mathematics machines, as calculators
are arithmetic machines. just as the introduction of
calculators upset the comfortable paradigm of primary
school arithmetic, so the spread of sophisticated com-
puters will upset the centuries old-tradition of college
and university mathematics. This year long division is
passe; next year integration will be under attack.

Reactions to machines in the mathematics classroom
are entirely predictable. Committee oracles and curric-
ulum visionaries proclaim a utopia in which students
concentrate on problem solving and machines perform
the mindless calculations (long division and integra-
tion). Yet many teachers, secure in their authoritarian
rule-dominated world, banish calculators (and com-
puters) from ordinary mathematics instruction, using
them if at all for separate curricular units where dif-
ferent ground rules apply. The recent International
Assessment of Mathematics documented that in the
United States calculators are never permitted in one-
third of the 8th grade classes, and rarely used in all but
5% of the rest [25, p. 18].

The large gap between theory and practice in the
use of computers and calculators for mathematics in-
struction is due in part to a pedagogical assumption
that pits teacher against machine. If the teacher's role
is to help (or force) students to learn the rules of arith-
metic (or calculus), then any machine that makes such
learning unnecessary is more a threat than an aid. De-
bates continue without end: Should calculators be
used on exams? Should we expect less mastery of
complex algorithms like long division or integration?
Will diminished practice with computation undermine
subsequent courses that require these skills?

The impact of computing on secondary school math-
ematics has been the subject of many recent discus-
sions in the United States. Jim Frey, coordinator of
two of the most recent assessments ([7], [9]), described
these efforts as

an unequivocal dissent from the spirit and substance of
efforts to improve school mathematics that seek broad
agreement on conservative curricula. Many mathematics
educators working with emerging electronic technology
see neither stability nor consensus in the future of school
mathematics. [9, p. vii]

The technology wars are just beginning to spread to
the college classroom. Lap size computers are now
common-they cost about as much as ten textbooks,
but take up only the space of one. Herb Wilf argues (in
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[28]) that it is only a matter of time before students will
carry with them a device to perform all the algorithms
of undergraduate mathematics. Richard Rand, in a

survey [20] of applied research based on symbolic al-
gebra agrees: "[Computer algebrai is virtually absent
from undergraduate education in the sciences and en-
gineering. . however, it is destined for a major role
in engineering and applied mathematics. It will not be
long before computer algebra is as common to engi-
neering students as the now obsolete slide rule once
was."

john Kemeny tells a story (in [13]) about calculus in-
struction that sheds interesting new light on the de-
bate about manipulating symbols. He asks for the
value of Io13 e"dx. A moment's thought reveals the an-
swer to be e13-1. That's the exact answer. Kemeny's
first question is this: what is its value to one significant
digit? With just paper and pencil, that's hard to do-
beyond the likely skills of typical calculus students.
(The answer: 400,000.) Now comes the second ques-
tion: what's the difference between the original ques-
tion and the traditional exact answer? They are both
exact expressions for the value we seek, equally unen-
lightening. So the proper question is not to find an
exact value, but to choose which of many possible
exact values is more suitable to the purpose at hand.

The challenges of computers in the classroom are
exactly analogous to those of calculators. The com-
puter will do for the teaching of calculus algorithms
just what calculators did for arithmetic computations

-it will make them redundant. In so doing, it will
challenge rigid teachers to find new ways to reassert
authority. Good teachers, however, should respond to
the computer as a blessing in disguise- as a deus ex

machina to rescue teaching from the morass of rules
and templates that generations of texts and tests have
produced.

Following the Rules

Mathematics students, perhaps more than other stu-
dents, like to get correct answers. Computers, for the
most part, reinforce the student's desire for answers.
Their school uses have been largely extensions of the
old "teaching machines:" programmed drill with pre-
determined branches for all possible answers, right or
wrong. In colleges and universities, computers are still
used most often as black-box calculators, spewing out
numbers in answer to questions both asked and un-
asked.

Core mathematics courses continue this long-
standing tradition, reinforcing the emphasis on rules
and answers. Traditional calculus textbooks bear an
uncanny resemblance to the first calculus text ever
published: l'H6pital's 1699 classic. They present rules
of differentiation and integration, with or without
proof: linearity, product and quotient rules, chain



rule, substitution, etc. After each rule are exercises to
practice on. At the end of the chapter are mixed exer-
cises, where the challenge is to use all the rules at the
same time.

Most students of even modest ability can master
these rules. If there is one thing that school does well,
it is to train students to learn rules. Strong students
master them quickly, and yearn for tough problems
that extend the rules (e.g., to x"). Weak students work
by rote, carefully adhering to template examples. Stu-
dents of all types flounder when presented with
"word problems" with which to "apply" their skills:
"A farmer has 200 meters of fence with which to . . . ."
Too often such problems are merely mathematical
crossword puzzles-stylized enigmas whose solu-
tions depend in large part on recognizing the unstated
problem pattern. Indeed, recent research in problem
solving suggests that many students learn to solve
such problems by establishing mental categories of
problem-type, and of course many instructors teach
students to identify such types.

The confluence of research on learning with sym-
bolic algebra has produced a rich new territory for
imaginative pedagogy. Symbolic algebra packages
linked to so-called "expert systems" on computers of
sufficient power (with high resolution graphics,
mouse-like pointers, and multiple windows) can pro-
vide an effective intelligent tutor for learning algebraic
skills. Computers can manipulate algebraic and nu-
merical expressions as well as students can, usually
better. They cannot, however, recognize, parse, or
model a word problem except in the narrowest sense

-by matching templates to canonical forms.
It is commonplace now to debate the value of

teaching skills such as differentiation that computers
can do as well or better than humans. Is it really worth
spending one month of every year teaching half of a
country's 18 year old students how to imitate a com-
puter? What is not yet so common is to examine criti-
cally the effect of applying to mathematics pedagogy
computer systems that are only capable of following
rules or matching templates. Is it really worth the time
and resources to devise sophisticated computer
systems to teach efficiently precisely those skills that
computers can do better than humans, particularly
those skills that make the computer tutor possible?
The basic question is this: since computers can now do
algebra and calculus algorithms, should we use this
power to reduce the curricular emphasis on calcula-
tions or as a means of teaching calculations more effi-
ciently? This is a new question, with a very old an-
swer.

Let Us Teach Guessing

35 years ago George P6lya
memorable title "Let Us

wrote a brief paper with the
Teach Guessing" [16]. Too

few of us actually do that: most teachers, the over-
whelming number, are authoritarian. Teachers set the
problems; students solve them. Good students soon
learn that the key to school mathematics is to discern
the right answer; poor students soon give up.

But P6lya says: let us teach guessing. It is not differ-
entiation that our students need to learn, but the art of
guessing. A month spent learning the rules of differ-
entiation reinforces a student's ability to learn (and
Iive by) the rules. It also, almost incidentally, teaches a

computational skill of diminishing scientific value. In
contrast, time spent making conjectures about deriva-
tives will teach a student something about the art of
mathematics and the science of order, in the context of
a useful but increasingly unnecessary computationai
skill.

Imagine a class with access to a good symbolic cal-
culus package. Instead of providing rules for differen-
tiation and exercises to match, the instructor can give
motivational lectures replete with physical and geo-
metric interpretation of the derivative. The homework
can begin with exploratory questions: ask the com-
puter for the derivative of simple functions. Make
conjectures and try them on the machine. After mas-
tering linear functions, try products, then exponen-
tials. Make conjectures; test them out.

The class can discuss their conjectures. Most will be
right; a few will not be. Discussion will readily elicit
counterexamples, and some informal proofs. With the
aid of the mathematics-speaking computer, students
can for the first time learn college mathematics by dis-
covery. This is an opportunity for pedagogy that
mathematics educators cannot afford to pass up.

Mathematics is, after all, the science of order and
pattern, not just a mechanism for grinding out for-
mulas. Students discovering mathematics gain insight
into the discovery of pattern, and slowly build confi-
dence in their own ability to understand mathematics.
Formerly, only students of sufficient genius to forge
ahead on their own could have the experience of dis-
covery. Now with computers as an aid, the majority of
students can experience for themselves the joy of dis-
covery. Only when the computer is used as an instru-
ment of discovery will it truly aid the learning of math-
ematics.

Metaphors for Mathematics

Two metaphors from science are useful for under-
standing the relation between computer science,
mathematics, and education. Cosmologists long de-
bated two theories for the origin of the universe-the
Big Bang theory, and the theory of Continuous Cre-
ation. Current evidence tilts the cosmology debate in
favor of the Big Bang. Unfortunately, this is all too
often the public image of mathematics as well, even
though in mathematics the evidence favors Contin-
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uous Creation.
The impact of computer science on mathematics and

of mathematics on computer science is the most pow-
erful evidence available to beginning students that
mathematics is not just the product of an original Eu-
clidean big bang, but is continually created in re-
sponse to challenges both internal and external. Stu-
dents today, even beginning students, can learn
things that were simply not known 20 years ago. We
must not only teach new mathematics and new com-
puter science, but we must teach as well the fact that
this mathematics and computer science is new. That's
a very important lesson for laymen to learn.

The other apt riretaphor for mathematics comes
from the history of the theory of evolution. Prior to
Darwin, the educated public believed that forms of life
were static, just as the educated public of today as-

sumes that the forms of mathematics are static, Iaid
down by Euclid, Newton and Einstein. Students
learning mathematics from contemporary textbooks
are like the pupils of Linnaeus, the great eighteenth
century Swedish botanist: they see a static, pre-Dar-
winian discipline that is neither growing nor evolving.
Learning mathematics for most students is an exercise
in classification and memorization, in labelling nota-
tions, definitions, theorems, and techniques that are
laid out in textbooks as so much flora in a wonderous
if somewhat abstract Platonic universe.

Students rarely realize that mathematics continually
evolves in response to both internal and external pres-
sures. Notations change; conj ectures emerge;
theorems are proved; counterexamples are discov-
ered. Indeed, the passion for intellectual order com-
bined with the pressure of new problems-especially
those posed by the computer-force researchers to
continually create new mathematics and archive old
theories.

Until recently, mathematics evolved so slowly and
in such remote frontiers that students in elementary
courses never noticed it. The presence of computers in
the mathematical ecosystem has changed all that: evo-
lution of theories and notation now takes place rap-
idly, and in contexts that touch the daily lives of many
students. Mathematics itself is changing in response to
this intruding species. So must mathematics curric-
ulum and mathematics pedagogy.
Department ol Mathemat ics
St. Olaf College
Northfield, MN 55057
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