
Living with a New
Mathernatical Species

C omputing and corrt'puter scielt'ce
proae again, that rnathernatics is a
liaing part of human cultu're.

by Lynn Arthur Steen

ln 19BS the lnternational Com'
mission on Mathematical lnstruc-
tion (lCMl) conaened a meeting
in France of mathernaticians,
con'r.puter scientists, and mathe'
matics educatorsfrom around the
uorld, to d,iscuss the impact of
" informatics" (the cont n'r'on E uro-
pean tern /or computer science)
on mathematics-specifi'cally, on
mathematical research, on the
mathematical cumiculum, and,
on mathernatical pedago gy.

Prior to the 1985 conference, an
lCMl Steering Comrnittee pre-
pared a draft paper on "the influ'
ence of computers and, informat-

ics on mathernatics and its teach'
ing." This paper utas circulated.
worldwide to interested, mathe'
matics educators, and' seraed as
the focal point for the meeting.

?his asacus article is ad.apted
from one of the responses to that
lCMl d,iscussion document. Afor-
mal report from the lCMl studY,
including seaeral responses, has
been published by Cambridge
[Jniaersity Press [The Influence
of Computers and Informatics on
Mathematics and Its Teaching].

ln this article, a dagger |fl in-
dicates an expression d.efi'ned in
the glossary on page 41.

forces the other to gro\r and
change, creating-in Thomas
Kuhn's language-a new mathe-
matical paradigm.

Until recently, mathematics was
a strictly human endeavor. It
evolved with human societY,
achieving a degree of universality
equalled by few other aspects of
human culture. Its ecology was a
human ecology, linked closelY to
science and language, evolving as
human science and language
changed.

But suddenly, in a brief instant
on the time scale of mathematics'
a new species has entered the
mathematical ecosystem. Com-
puters speak mathematics, but in
a dialect that is difficult for some
humans to understand. Their
number systems are finite rather
than infinite; their addition is not
commutative; and they don't real-
ly understan doozero," not to sPeak
of ooinfinity." Nonetheless, theY
do embody mathematics.

Many features of the new com-
puter mathematics appear super-
ficial: notation such as n and **
for exponentiation; linearized ex-
pressions for formulas tradition-
ally represented by a two-dimen'
sional layout; a preference for bi'
nary, octalo or hexadecimal
representations of numbers; and
in early languages, a new action'

Computers are both the creature book Turing's Man, calls comput'
and the creator of mathematics. ers 'oembodied mathematics."
They are, in the apt phrase of Computers shape and enhance the
Seymour Papert, oomathematics- power of mathematics, while
speaking beings." More recently, mathematics shapes and enhances
J. David Bolter, in his stimulating the power of computers. Each
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oriented meaning to the equals
sign. Some variances are more sig-
nificant, and more difficult to as-
similate into traditional mathe-
matics: finite number systems,
interval arithmetic, roundoff
errors, or computational intrac-
tability.

As mathematics goes, linguistic
and notational changes are truly
superficial-it really is the same
subject modulo an isomorphism.
These differences can be very con-
fusing to students learning mathe-
matics and computing, although
perhaps no more so than the dif-
ferences in vocabulary and per-
spective between an engineer and
a mathematician. The blend of
computer language and tradition-
al mathematics produces a kind of
Franglais, decried by purists yet
employed by everyone.

The core of mathematics, how-
ever, is also changing under the
ecological onslaught of mathemat-
ics-speaking computers. New spe-
cialties in computational com-
plexity, theory of algorithms,
graph theoryo and formal logic at-
test to the impact that computing
is having on mathematical re-
search. As Harvard physicist Ar-
thur Jaffe has argued so well in his
recent essay ooOrdering the Uni-
verse," the computer revolution is
a mathematical revolution. The
intruder has changed the ecosys-
tem of mathematics, profoundly
and permanently.

New Mathernatics
for a New Age

Computers are discrete, finite ma-
chines. Unlike a Turing machine
with an infinite tape, real ma-
chines have limits of both time
and space. Theirs is not an idealis-
tic Platonic mathematics, but a
mathematics of limited resources.
The goal is not just to get a result,
but to get the best result for the
least effort. Optimization, effi-
ciency, speed, productivity-
these are essential objectives of
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modern computer mathematics.
Questions of optimization lead to
the study of graphs, of operations
research, of computational com-
plexity.

Computers are also logic ma-
chines. They embody the funda-
mental engine of mathematics-
rigorous propositional calculus.
So it comes as no surprise that
computer programs can become
full partners in the process of
mathematical proof. The first cel-
ebrated computer proof was that
of the four-color theorem: the
computer served there as a sophis-
ticated accountant, checking out
thousands of cases of reductions.
Despite philosophical alarms that
computer-based proofs would
change mathematics from an o
priori to a contingent, fallible
subject, careful analysis reveals
that nothing much had really
changed. The human practice of
mathematics has always been falli-
ble; now it has a partner in falli-
bility.

Recent work on the mysterious
Feigenbaum constantt reveals just
how far this evolution has pro-
gressed in just eight years: com-
puter-assisted investigations of
families of periodic maps suggest-
ed the presence of a mysterious
universal limit, apparently inde-
pendent of the particular family
of maps. Subsequent theoretical
investigations led to proofs that
are true hybrids of classical analy-
sis and computer programming:
the crucial step in a fixed-point
argumentt requires a tight esti-
mate on the norm of a high-degree
polynomial. This estimate is made
by a computer program, carefully
crafted using interval arithmetic
to account in advance for all pos-
sible inaccuracies introduced by
roundoff error. Thus computer-
assisted proofs are possible not
just in graph theory, but also in
that bastion of classical mathe-
matics, functional analysis.

Computers are also computing
machines. By absorbing, trans-
forming, and summarizing mas-

sive quantities of dqtq., computers
can simulate reality. No longer
need the scientist build an elabo-
rate wind tunnel or a scale-model
refinery in order to test engineer-
ing designs. Wherever basic sci-
ence is well understood, comput-
er models can emulate physical
processes by carrying out instead
the process implied by mathemat-
ical equations. Mathematical
models used to be primarily tools
used by theoretical scientists to
formulate general theories; now
they are practical tools of enor-
mous value in the everyday world
of engineering and economics.
They focus mathematical atten-
tion on the relation between data
and theory, on stochastic process-
esf and differential equations, on
data analysis and mathematical
statistics.
, In many respects mathematics
has become the creature of the
computer: by providing compel-
ling tools in combinatorics, logic,
and calculation, the computer has
made an offer of intellectual ad-
venture that mathematicians can-
not refuse. But in a very real
sense, mathematics is also the cre-
ator of the computer. David Hil-
bert's struggle with the founda-
tions of mathematics-itself pre-
cipitated by the paradoxes of set
theory elucidated by Frege and
Russell-led directly to Alan Tu-
ring's proposal for a universal ma-
chine of mathematics.

It has been fifty years since Tu-
ring developed his scheme of
computability, in which he ar-
gued that machines could do
whatever humans might hope to
do. His was a formal, abstract sys-
tem, devoid of hardware and real
machines. It took two decades of
engineering effort to turn Turing's
abstractions into productive real
machines.

During that same period, ab-
stract mathematics flourished, led
by Bourbaki, symbolized by the
"generalized abstract nonsense"
of category theoryt. But with ab-
straction came power; with rigor



The fusion of mathematics with computer technology,
along with a sense of the aesthetic, is embodied in the
study of visual representations of Julia sets-work done
by Heinz-Otto Peitgen and Dietmar Saupe, who prepared
these graphics at the University of Utah' Three of the
pictures are derived from the relaxed Newton method
Al,. (z) = z - t\ p(zy p' (zllor f,z) = * - 1 in [-1'1] x [-1'1 ];

clockwise from upper left, the patterns are based on I =
1.5, )t = 1.0, and )r = 0.5, respectively. The lower lett
picture is a representation of Newton's Method lor z4 - 1

= 0. [For more information, see "Cayley's Problem and
Julia Sets" by Peitgen, Saupe, and von Haeseler, Ihe
Mathematical I ntel I igencer, 6(2):1 1 -2O.1
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came certainty. Once real com-
puters emerged, the complexity of
programs quickly overwhelmed
the informal techniques of back-
yard programmers. Formal meth-
ods became d.e rigueur; even the
once-maligned category theory is
now enlisted to represent finite
automata and recursive functions.
Once again, as happened before
with physics, mathematics be-
came more efficacious by becom-
ing more abstract.

Changing the Mathernatics
Curriculum

Twenty years ago, in the United
States, the Committee on the Un-
dergraduate Program in Mathe-
matics (curnn) issued a series of
reports that led to a gradual stan-
dardization of curricula among
undergraduate mathematics de-
partments. Yet the circumstances
that make computing a force for
rapid evolution in the notation

transparent by filtering out most
of the messy drudgery which
would otherwise accompany the
working out of specific illustra-
tions." Rosser emphasized many
of the same pointso and warned of
impending disaster to undergrad-
uate mathematics if their advice
went unheeded: ooUnless we revise
[mathematics courses] so as to em-
body much use of computers.
most of the clientele for these
courses will instead be taking
computer courses in 1984."

In the decade since these words
were written, U.S. undergraduate
and graduate degrees in mathe-
matics have .declined by 507o.
New courses in modelling, dis-
crete mathematics, and data anal-
ysis are emerging in every college
and university. The clientele for
traditional mathematics has in-
deed migrated to computer sci-
ence. The former CUPM consensus
is all but shattered. Five years ago
CUPM issued a new report, this one
on the Undergraduate Program in

and utilize mathema{ical concepts
and techniques. The advocacy of
discrete mathematics rapidly be-
came quite vigorous, and the
Sloan Foundation funded experi-
mental curricula at six institu-
tions to encourage development of
discrete-based alternatives to stan-
dard freshman calculus.

The niche of mathematics in the
university ecosystem has been
radically transformed by the pres-
ence of computer science in the
undergraduate curriculum. The
strongest mathematics depart-
ments continue to offer the tradi-
tional cuPM major, oftentimes for
a declining number of students.
Many smaller departments, how-
ever, have been forced to drop
regular offerings of such former
core courses as topology, analysis,
and algebra. In such institutions,
where resources do not permit
full majors in mathematics and
computer science, the mathemat-
ics program often becomes a hy-
brid major consisting of some
computer science, some mathe-
matics, and some statistics-intro-
ductions to everything, mastery of
nothing.

The need for consensus on the
contents of undergraduate mathe-
matics is perhaps the most impor-
tant issue facing American college
and university mathematics de-
partments. On the one hand, de-
partments that have a strong tradi-
tional major often fail to provide
their students with the robust
background required to survive
the evolutionary turmoil in the
mathematical sciences. Like the
Giant Panda, they depend for sur-
vival on a dwindling supply of
bamboo-strong students interest-
ed in pure mathematics. On the
other hand, departments offering
flabby composite majors run a
different risk: by avoiding ad-
vanced, abstract requirements,
they often misrepresent the true
source of mathematical knowl-
edge and power. Like zoo-bred
animals unable to forage in the
wild, students ryho have never

Vieuing con puter literacy as the appropriate
tnodern substitute for m,athemd,tical knou:ledge
often leads stud,ents to superficial courses that
emphasize aocabulary and experiences ot)er
irnportant concepts and principles.

and practice of mathematics also
put pressure on the mathematics
curriculum in colleges and uni-
versities. This pressure is not new,
but has been building in intensity
throughout the past decade.

In 1971, Garrett Birkhoff and J.
Barkley Rosser presented papers
at a meeting of the Mathematical
Association of America concern-
ing their predictions for under-
graduate mathematics in lg84.
Birkhoff urged increased empha-
sis on modelling, numerical alge-
bra, scientific computing, and
discrete mathematics. He also ad-
vocated increased use of comput-
er methods in pure mathematics:
ooFar from muddying the limpid
waters of clear mathematical
thinking, they make them more
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Mathematical Sciences. Beyond
calculus and linear algebra, they
could agree on no specific content
for the core of a mathematics ma-
jor: 'oThere is no longer a common
body of pure mathematical infor-
mation that every student should
know."

The symbol of reformation has
become discrete mathematics.
Several years ago Anthony Ralston
argued forcefully the need for
change before both the mathemat-
ics community and the computer
science community. Discrete
mathematics, in Ralston's view, is
the central link between the
fields. College mathematics must
introduce discrete methods early
and in depth; computer science
curricula must, in turno require



been required to master a deep
theorem are ill-equipped to mas-
ter the significant theoretical
complications of real-world com-
puting and mathematics.

Cornputer Literacy

Mathematical scientists at Ameri-
can institutions of higher educa-
tion are responsible not only for
the technical training of future
scientists and engineers, but also
for the quantitative literacy of lay
people-of future lawyers, politi-
cianso doctors, educators, and
clergy. Public demand that col-
lege graduates be prepared to live
and work in a computer age has
caused many institutions to intro-
duce requirements in quantitative
or computer literacy, Many edu-
cators are calling for a total re-
form of liberal education.

In l98l the Alfred P. Sloan
foundation initiated curricular
exploration of oothe new liberal
arts," the role of applied mathe-
matical and computer sciences in
the education of students outside
technical fields: "The ability to
cast one's thoughts in a form that
makes possible mathematical ma-
nipulation and to perform that
manipulation [has] become essen-
tial in higher education, and
above all in liberal education." In
November 1982, University of Cal-
ifornia President David Saxon
wrote in a Science editorial that
liberal education oowill continue
to be a failed idea as long as our
students are shut out from, or
only superficially acquainted
with, knowledge of the kinds of
questions science can answer and
those it cannot."

Too often these days the general
public views computer literacy as
the appropriate modern substi-
tute for mathematical knowledge.
Unfortunately, this often leads
students to superficial cburses
that emphasize vocabulary and
experiences over concepts and
principles. The advocates of com-

puter literacy conjure images of
an electronic society dominated
by the information industries.
Their slogan of ooliteracy" echoes
traditional educational values,
conferring the aura but not the
logic of legitimacy.

Typical courses in computer lit-
eracy, however, are filled with
ephemeral details whose intellec-
tual life will barely survive the
students' school years. A best-sell-
ing textbook in the United States
for courses introducing comput-
ing to nonspecialists is full of
glossy color pictures, but does not
even mention the word "algo-
rithm." These courses contain
neither a Shakespeare nor a New-
ton, neither a Faulkner nor a Dar-
win; they convey no fundamental
principles nor enduring truths.

Computer literacy is more like
driver education than like calcu-
lus. It teaches students the pre-
vailing'rules of the road concern-
ing computers: how to create and
save files, how to use word proces-
sors and spreadsheets, how to pro-

gram in Basic. One can be confi-
dent only that most students fin-
ishing such a course will not
injure themselves or others in
their first encounter with a real
computer in the workplace. But
such courses do not leave students
well prepared for a lifetime of
work in the information age.

Algorithms and data structures
are to computer science what
functions and matrices are to
mathematics. As much of the tra-
ditional mathematics curriculum
is devoted to elementary functions
and matrices, so beginning
courses in computing-by whatev-
er name-should stress standard
algorithms and typical data struc-
tures.

For example, as early as :il-
dents study linear equations they
could also learn about stacks and
queues; when they move on to
conic sections and quadratic
equations, they could in a parallel
course investigate linked lists and
binary trees. The algorithms for
sorting and searching, while not

Glossary
category theory A general theory of mathematical struc-

tures, emphasizing similarity of form by
means of mappings (called functors) from
one structure to another.

The number 4.669196223 . . ., calculated
as the limit of the ratio of dilferences
between successive values of a parameter
ct at bifurcation points of iterations ol a map
x- f"(x). This constant arises experimen-
tally in many contexts; M. Feigenbaum
showed that it is independent of the partic-
ular family of functions involved in the
iteration.

A method of proof derived from topology
which, under certain circumstances, guar-
antees a solution to an equation of the form
f(x) : x.

A simple model for magnetization strength
in permanent magnets based on tiny ab-
stract magnets or "spins" arranged in a
regular lattice.

A sequence or continual process of ran-
dom events.

Feigenbaum constant

fixed-point argument

lsing model

stochastic process
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part of traditional mathematics,
convey the power ofabstract ideas
in diverse applications every bit as
much as do conic sections or de-
rivatives.

Computer languages can (and
should) be studied for the con-
cepts they represent-procedures
in Pascalo recursion and lists for
Lisp-rather than for the syntac-
tic details of semicolons and line
numbers. They should not be un-
dersold as mere technical devices
for encoding problems for a
dumb machine, nor oversold as
exemplars of a new form of litera-
cy. Computer languages are not
modern equivalents of Latin or
French; they do not deal in nu-
ance and emotiono nor are they
capable of persuasiolt, convic-
tion, or humor. Although comput-
er languages do represent a new
and powerful way to think about
problems, they are not a new form
of literacy.

Cornputer Science

The confusion evident in univer-
sity mathematics departments is
an order of magnitude less severe
than that which operates in uni-
versity computer science pro-
grams. In the United States, these
programs cover an enormous
spectrum, from business-oriented
data-processing curricula through
management information science
to theoretical computer science.
All of these intersect with the
mathemqtics curriculum, each in
different ways. The computer sci-
ence community is now struggling
with this chaos, and has a process
in place for identifying exemplary
programs of different types as a
first step towards an accreditation
system for college computer sci-
eni:e departments.

Several computer science cur-
ricula have been developed by the
professional societies ACM and
IEEE, for both large universities
and small colleges. Recently Mary
Shaw of Carnegie-Mellon Univer-
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sity put together a composite re-
port on the undergraduate com-
puter science curriculum [see
BOOK REVIEWS in this issue, page
4B]. This report is quite forceful
about the contribution mathemat-
ics makes to the study of comput-
er science: ooThe most important
contribution a mdthematics cur-
riculum can make to computer
science is the one least likely to be
encapsulated as an individual
course: a deep appreciation of the
modes of thought that character-
ize mathematics."

The converse is equally true:
one of the more important contri-
butions that computer science can
make to the study of mathematics
is to develop in students an appre-
ciation for the power of abstract
methods when applied to concrete
situations. Students of traditional
mathematics used to study a sub-
ject called ooReal and Abstract
Analysis"; students of computer
science now can take a course
titled "Real and Abstract Ma-
chines." In the former oonew

math," as well as in modern alge-
bra, students learned about rela-
tions, abstract versions of func-
tions; today, business students
study o'relational data structures"
in their computer courses, and
advertisers togt "fully relational"
as the latest innovation in business
softwarq. The abstract theories of
finite-state machines and deter-
ministic automata are reflections
in the mirror of computer science
of well-established mathematical
structures from abstract algebra
and mathematical logic.

An interesting and pedagogical-
ly attractive exainple of the power
of abstraction made concrete can
be seen in the popular electronic
spreadsheets that are marketed
under such trade names as Lotus
and VisiCalc. Originally designed
for accountingo they can equally
well emulate cellular automata or
the Ising model for ferromagnetic
materialst. They can also be 'opro-
grammed" to carry out most stan-
dard mathematical algorithms:

the Euclidean afuorithm, the
simplex method, Euleros method
for solving differential equations.
An electronic spreadsheet-the
archetype of applied computing-
is a structured form for recursive
procedures--the fundamental tool
of algorithmic mathematics. It is,
to echo David Bolter, mathemat-
ics embodied in a computer.

Computers in the Classroom

Computers are mathematics ma-
chines, as calculators are arithme-
tic machines. Just as the introduc-
tion of calculators upset the com-
fortable paradigm of primary-
school arithmetic, so the spread of
sophisticated computers will up-
set the centuries-old-tradition of
college and university mathemat-
ics. This year, long division is pas-
se; next year, integration will be
under attack.

Reactions to machines in the
mathematics classroom are entire-
ly predictable. Committee oracles
and curriculum visionaries pro-
claim a utopia in which students
concentrate on problem solving
and machines perform the mind-
less calculations (long division
and integration). Yet many teach-
ers, secure in their authoritarian
rule-dominated world, banish cal-
culators (and computers) from or-
dinary mathematics instruction,
using them if at all for separate
curricular units where different
ground rules apply. The recent
International Assessment of Math-
ematics documented that in the
United States calculators are nev-
er permitted in one-third of the
Bth grade classes, and rarely used
in all but 57o of the rest.

The large gap between theory
and practice in the use of comput-
ers and calculators for mathemat-
ics instruction is due in part to a
pedagogical assurnption that pits
teacher against machine. If the
teacher's role is to help (or force)
students to learn the rules of
arithmetic (or calculus), the4 any



machine that makes such learning
unnecessary is more a threat than
an aid. Debates continue without
end: Should calculators be used
on exams? Should we expect less
mastery of complex algorithms
like long division or integration?
Will diminished practice with
computation undermine subse-
quent courses that require these
skills?

The impact of computing on
secondary-school mathematics
has been the subject of many re-
cent discussions in the United
States. University of Maryland
mathematician Jim Fey, coordi-
nator of two of the most recent
assessments, described these ef-
forts as ooan unequivocal dissent
from the spirit and substance of
efforts to improve school mathe-
matics that seek broad agreement
on conservative curricula. ManY
mathematics educators working
with emerging electronic technol-
ogy see neither stability nor con-
sensus in the future of school
mathematics."

The technology wars are just be-
ginning to spread to the college
classroom. Lap-size computers
are now common-they cost about
as much as ten textbooks, but take
up only the space of one. Herb
Wilf, editor-elect of the American
Mathematical Monthly, argues
that it is only a matter of time
before students will carry with
them a device to perform all
the algorithms of undergraduate
mathematics. A recent survey of
applied research based on sym-
bolic algebra asserts that "it will
not be long before computer alge-
bra is as common to engineering
students as the now obsolete slide
rule once was."

John Kemeny tells a story about
calculus instruction that sheds in-
teresting new light on the debate
about manipulating symbols. He
asks for the value of [[3 e' dx. A
moment's thought reveals the an-
swer to be e13 - l. That's the exact
answer, Kemeny's first question is
this: What is its value to one sig-

Symbolic computation, as in this example from Macsyma, is increasingly
important in many pure and applied branches of mathematics. Here, opera-
tions are performed on the function f (x ) seen at the top.

nificant digit? 'With just paper question: What's the difference
and pdncil, that's hard to do- between the original question and
beyond the likely skills of typical the traditional exact answer? They
calculus students. (The answer: are both exact expressions for the
400,000.) Now comes the second value we seek, equally unenlight-

Symbolic Computation
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ening. So the proper question is
not to find an exact value, but to
choose which of many possible
exact values is more suitable to
the purpose at hand.

The challenges of computers in
the classroom are exactly analo-
gous to those of calculators. The
computer will do for the teaching
of calculus algorithms just what
calculators did for arithmetic
computations-it will make them
redundant. In so doing, it will
challenge rigid teachers to find
new ways to 'reassert authority.
Good teachers, however, should
respond to the computer as a
blessing in disguise-as a deus ex
machina to rescue teaching from
the morass of rules and templates
that generations of texts and tests
have produced.

or without proof: linearity, prod-
uct and quotient rules, chain rule,
substitutiono and so forth. After
each rule are exercises to practice
on. At the end of the chapter are
mixed exercises, where the chal-
lenge is to use all the rules at the
same time.

Most students of even modest
ability can master these rules. If
there is one thing that school does
well, it is training students to
learn rules. Strong students mas-
ter them quickly, and yearn for
tough problems that extend the
rules (for instance, to r"). Weak
students work by rote, carefully
adhering to template examples.
Students of all types flounder
when presented with ooword prob-
lems" to ooapply" their skills on:
ooA farmer has 200 meters of fence

expressions as we4.,-,.as students
can, usually better. However, they
cannot tecognize, parse, or model
a word problem except in the nar-
rowest sense-by matching tem-
plates to canonical forms.

It is commonplace now to de-
bate the value of teaching skills
such as differentiation that com-
puters can do as well or better
than humans. Is it really worth
spending one month of every year
teaching half of a country's IB-
year-old students how to imitate a
computer? What is not yet so com-
mon is to examine critically the
effect of applying to mathematics
pedagogy computer systems that
are only capable of following
rules or matching templates. Is it
really worth the time and re-
sources to devise sophisticated
computer systems for efficiently
teaching precisely those skills that
computers can do better than hu-
mans, particularly those skills
that make the computer tutor pos-
sible? The basic question is this:
since computers can now do alge-
bra and calculus algorithms,
should we use this power to re-
duce the curricular emphasis on
calculations, or as a means of
teaching calculations more effi-
ciently? This is a new question,
with a very old answer.

Let Us Teach Guessing

Thirty-five years ago, George P6l-
ya wrote a brief paper with the
memorable title ool,et Us Teach
Guessing." Too few teachers actu-
ally do that: most lsnsh6r's-1hs
overwhelming nu16[sr'-x1s au-
thoritarian. Teachers set the prob-
lems; students solve them. Good
students soon learn that the key to
school mathematics is to discern
the right answer; poor students
soon give up.

But P6lya says: let us teach
guessing. It is not differentiation
that our students need to learn,
but the art of guessing. A month
spent learning the rules of differ-
entiation reinforces a student's

As rnathernotics and contputer scier.ce interd.ct,
beginning students cotne to realize that mathe-
nLortics is continually created in response to netn
internal and externd.l challenges.

Following the Rules

Mathematics students, just like
any other students, like to get cor-
rect answers. Computers, for the
most part, reinforce the student's
desire for answers. Their school
uses have been largely extensions
of the old 'oteaching machines":
programmed drill with predeter-
mined branches for all possible
answers, right or wrong. In col-
leges and universities, computers
are still used most often as black-
box calculators, spewing out num-
bers in answer to questions both
asked and unasked.

Core mathematics courses con-
tinue this long-standing tradition,
reinforcing the emphasis on rules
and answers. Traditional calculus
textbooks bear an uncanny resem-
blance to the first calculus text
ever published: I'Hopital's 1699
classic. They present rules of dif-
ferentiation and integration, with
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with which to . . . ." Too ofteno
such problems are merely mathe-
matical crossword puzzles-styl-
ized enigmas whbse solutions de-
pend in large part on recognizing
the unstated problem pattern. In-
deed, recent research in problem
solving suggests that many stu-
dents learn to solve such problems
by establishing mental categories
of problem-type, and of course
many instructors teach students to
identify such types.

The confluence of research on
learning with symbolic algebra
has produced a rich new territory
for imaginative pedagogy. Syrn-
bolic algebra packages linked to
so-called t'expert systems" on
computers of sufficient power
(with high-resolution graphics,
mouse-like pointers, and multiple
windows) can provide an effective
intelligent tutor for learning alge-
braic skills. Computers can ma-
nipulate algebraic and numerical



ability to learn (and live by) the
rules. In contrast, time spent
making conjectures about deriva-
tives will teach a student some-
thing about the art of mathematics
and the science of order..With the aid of a mathematics-
speaking computer, students can
for the first time learn college
mathematics by discovery. This is
an opportunity for pedagogy that
mathematics educators cannot af-
ford to pass up. Mathematics is,
after all, the science of order and
pattern, not jusl a mechanism for
grinding out formulas. Students
discovering mathematics gain in-
sight into the discovery of pattern,
and slowly build confidence in
their own ability to understand
mathematics.

Formerly, only students of suf-
ficient genius to forge ahead on
their own could have the experi-
ence of discovery. Nowo with com-
puters as an aid, the majority of
students can experience the joy of
discovery for themselves. Only
when the computer is used as an
instrument of discovery will it tru-
ly aid the learning of mathemat-
ics.

most po\/erful evidence available
to beginning students that mathe-
matics is not just the product of an
original Euclidean big bango but is
continually created in response to
challenges both internal and ex-
ternal. Students today, even be-
ginning students, can learn things
that were simply not known twen-
ty years ago. We must not only
teach new mathematics and new
computer science, but we must
also teach the fact that this mathe-
matics and computer science is
new. That's a very important les-
son for laymen to learn.

The other apt metaphor for
mathematics comes from the his-
tory of the theory of evolution.
Prior to Darwin, the educated
public believed that forms of life
were static, just as the educated
public of today assumes that the
forms of mathematics are static,
laid down by Euclid, Newton, and
Einstein. Students learning math-
ematics from contemporary text-
books are like the pupils of Lin-
naeus, the great eighteenth-centu-
ry Swedish botanist: they see a
static, pre-Darwinian discipline
that is neither growing nor evolv-

ing new mathematic$,,a.nd archiv-
ing old theories.

The practice of computing and
the theory of computer science
combine to change mathematics
in ways that are highly visible and
attractive to students. This contin-
ual change reveals to students and
laymen the living character of
mathematics, restoring to the edu-
cated public some of what the
experts have always known-that
mathematics is a living, evolving
component of human culture.
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W ith a m ath e m ati c s - s p e a king c o wt p ut e r, stud.e nt s
can rto?ro learn college rnath by discotsery.

Metaphors for Mathematics

Two metaphors from science are
useful for understanding the rela-
tion between computer science
and mathematics in education.
Cosmologists long debated two
theories for the origin of the uni-
ygrss-1hs Big Bang theory, and
the theory of Continuous Cre-
ation. Current evidence tilts the
cosmology debate in favor of the
Big Bang. Unfortunately, this is
all too often the public image of
mathematics as well, even though
in mathematics the evidence fa-
vors Continuous Creation. "

The impact of computer science
on mathematics and of mathemat-
ics on computer science is the

ing. For most students, lear'ning
mathematics is an exercise in clas-
sification and memorization, in
labelling notations, definitions,
theorems, and techniques that are
laid out in textbooks like so much
flora in a wonderous if somewhat
abstract Platonic universe.

Students rarely realize that
mathematics continually evolves
in response to both internal and
external pressures. Notations
change; conjectures emerge; theo-
rems are proved; counterexam-
ples are discovered. Indeed, the
passion for intellectual order
combiried with the pressure of
new problems-especially those
posed by the computer-force re-
searchers to be continually creat-
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