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The occasion of the Tome Centennial compels one to compare the present with the past.  Today 
mathematics is abstract yet powerful, pervasive yet invisible, and predominantly American. One 
hundred years ago it was less abstract and therefore less powerful, less pervasive but perhaps 
more visible, and exclusively European.  The largely invisible rise of American mathematics 
from nineteenth century impotence to twentieth century leadership is an extraordinary 
accomplishment, a quiet revolution as impressive as those of quantum physics and molecular 
biology, yet largely hidden from public view.  

The evidence for the revolution is all around us.  High speed computers, fuel-efficient airplanes, 
world-wide communications are visible technological products of contemporary mathematics. 
Less visible but more fundamental are deep insights such as gauge field theory, nonlinear 
dynamics, and computational complexity that provide unifying foundations for modern science. 
We live in a "minds-on" world created by the abstract theories of contemporary mathematics--
yet hardly anyone really knows that mathematics even exists.  

A well-known American mathematician reported an incident--all too typical--in which a new 
acquaintance asked his wife what her husband did.  "He is a mathematician," she said.  The 
acquaintance, confused, responded after a slight pause:  "Well, what else does he do?"  Surely, 
she thought, no one can keep busy just "being" a mathematician.  

Tomorrow one of the Tome Symposia is devoted to C. P. Snow's classic definition of the two 
cultures--humanistic and scientific. One can, I believe, extend Snow's metaphor from two 
cultures to three:  humanists are to scientists as scientists are to mathematicians. Educated 
laymen feel obliged to know something of Shakespeare and Mozart, of Eliot and Picasso;  they 
are comfortable with only the most superficial (and usually distorted) acquaintance with the 
works of Darwin and Einstein, not to mention Pauling and Feynman. But they have not even 
heard of Gauss and von Neumann, or Hilbert and Poincare.  

The only mathematics visible to our culture is the mathematics of the past--the completed 
masterpieces of Euclid and Newton, of geometry and calculus.  Everyone knows that this 
mathematics exists, and that it is centuries old.  No one knows that modern mathematics exists, 
much less that it is being continually created. Mathematics is indeed our invisible culture.  

A Profile of the Past  

In the nineteenth century mathematics existed only in Europe, but it was actively pursued in 
every country of Europe. In France and Germany Augustin Cauchy and Karl Weierstrass 
articulated the grand theories of what we now call "classical analysis", the mature form of 
Newtonian calculus.  Joseph Fourier launched an analytic investigation of heat that has led to the 
vast modern enterprise of harmonic analysis, and James Clerk Maxwell used the mature calculus 
to spell out the laws of electrodynamics.  
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Karl Frederich Gauss in Germany, and Nicolai Lobachevski in Russia shocked the literate world 
with the discovery of geometries that do not obey the laws of Euclid, while Niels Henrik Abel in 
Norway and Evastois Galois in France used primitive ideas of group theory to help resolve all 
the famous unsolved problems left over from the Greek classics. The nineteenth century ended 
on a grand climax, with the German mathematician David Hilbert, whom many believed to be 
the greatest mathematician of the time, outlining for an International Congress in Paris the major 
problems that nineteenth century mathematics was passing onto the twentieth century. By now, 
nearly all of Hilbert's problems have been solved--but neither the problems nor their solutions 
are visible to the typical educated person.  

In contrast to Europe, during the nineteenth century mathematics in America meant little more 
than arithmetic.  Up until the Civil War, colleges like Princeton, Williams, and Yale required of 
entering students only "vulgar" arithmetic--the arithmetic of fractions, not decimals.  By the last 
quarter of the nineteenth century, when most of the Midwestern land-grant institutions and 
liberal arts colleges were being founded, the leading institutions in the East recommended 
"algebra through simple equations" and "two books" of Euclid for admission.  

The undergraduate curriculum reflected the entrance requirements: in 1890 Princeton required of 
mathematics students two years of coursework in geometry, trigonometry, analytical geometry, 
navigation, and mensuration, leaving calculus as an upper division elective along with a few 
other advanced courses.  Not until the 1870's when the eminent English mathematician J. J. 
Sylvester came to Johns Hopkins did the United States have any person with training equivalent 
to a Ph. D. in mathematics.  (Sylvester's emigration was instigated by anti-Jewish laws that 
prevented him from accepting an appointment at Oxford or Cambridge--an uncanny foretoken of 
the history of American mathematics which was later to be immeasurably enriched by hundreds 
of European mathematicians, mostly Jewish, fleeing Nazi persecution.)  

The state of American mathematics in 1885 reflected the pragmatic needs of a new nation.  Post-
revolutionary attitudes stressed isolation from Europe, and rewarded productive, action-oriented, 
nation-building work.  Teaching loads were typically 20 hours per week or more;  70% of those 
teaching mathematics taught as well a wide variety of other subjects--not just related sciences 
either. Knowledge for its own sake, the liberal education that Cardinal Newman described as 
"sufficient for itself, apart from every external and ulterior object" was not valued in nineteenth 
century America. Mathematics in that era was a utilitarian enterprise for a pre-scientific society.  

The Roots of a Revolution  

Today we are enveloped in (and may be consumed by) a society dominated by science and 
technology.  Yet our roots are still pre-scientific. Contemporary Americans know mathematics 
primarily through their own school experiences, and through their children's experiences. 
Consequently, they view the "basic" mathematics of arithmetic, algebra, and elementary 
geometry from the same perspective as did their nineteenth century forefathers--as a pragmatic 
necessity to prepare for a productive life.  

The "new math" introduced into the schools two decades ago did not fit this perspective.  
Abstract sets--the foundation of European mathematics-- replaced the concrete numbers of 
everyday arithmetic, yet liberal learning did not replace pragmatism as the guiding principle of 
American education. American culture rejected the "new math" as surely as the human body 
rejects foreign tissue.  
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It is both fitting and ironic that the centennial we celebrate today is also the centennial of Georg 
Cantor's monumental theory of infinite sets.  In an intensive burst of creative energy, rare among 
scientists of any era, Cantor developed between 1879 and 1884 virtually the entire content of his 
revolutionary theory of sets.  Hilbert called Cantor's work a paradise, while others called it 
bizarre.  Yet no one today disputes its character or significance: the entire edifice of twentieth 
century mathematics rests on the foundation laid down by Cantor.  

Controversy is no stranger to Cantor's theory of sets.  Cantor's contemporaries such as Kronecker 
and Brouwer rejected many parts of it, complaining about the "monsters" that it had let loose in 
the pristine garden of mathematics.  Yet the judgment of a century's research is that set theory 
made possible the abstractions of twentieth century mathematics, which in turn have yielded 
enormous applications in science and technology. It is ironic that this key tool of modern 
mathematics, born in Europe just a hundred years ago, became in America the defaced symbol of 
the "new math" movement--a vivid reminder of our anti-intellectual nineteenth century roots in 
American pragmatism.  

A New Look at New Math  

Cantor's work grew out of very pragmatic stuff--the attempt by Joseph Fourier to understand the 
transmission of heat by decomposing general mathematical functions into sums of sine and 
cosine waves.  This technique, now known as Fourier analysis, serves today as the basis for 
communication engineering, quantum physics, and numerous parts of abstract mathematics.  But 
for Cantor it posed a strong intellectual puzzle:  at some points, it failed to work. He chose to 
study these points of failure, or as the mathematician puts it, points of non-convergence.  

As Alice following the White Rabbit into wonderland, Cantor emerged from this tiny entrance 
into a world of unimaginable behavior--of different sizes of infinity, of sets and functions that 
defied intuition.  Instead of being smooth and predictable, Cantor's creatures were twisted and 
chaotic.  In a prelude of the recent "new math" debate, scientists and mathematicians took sides 
in a vigorous argument about whether these new ideas were of any practical use, or were just 
figments of a distorted imagination.  

I don't know if the Greek exploration of conic sections--of parabolas, ellipses and hyperbolas--
generated controversy about utility, but we all know now how Kepler and Newton found in these 
ideas the apt language to express the laws of planetary motion.  I do know that the introduction 
by Gauss and Lobachevski of non-Euclidean geometries was highly controversial--so much so 
that Gauss was unwilling to make his discovery public.  Yet in less than a century the warped 
spaces of these geometries proved to be the appropriate mathematics for Einstein's theory of 
relativity.  

So too with Cantor's sets.  At first only mathematicians appreciated them. They were useful--
indeed, essential--as the foundation of modern mathematics. The logical architecture of all 
contemporary mathematics and computer science rests on the theory of sets.  Most 
mathematicians and computer scientists, however, do not work on the foundations:  they work in 
the upper stories, adding new rooms and refining the plumbing.  They take set theory for granted, 
as a convenient language that helps support their work.  

In recent years, however, mathematics has turned its attention from the study of order to the 
study of chaos.  Whereas the classical mathematics of Newton explains the orderly, predictable 
world that Fourier explored, it is unable to explain the turbulence that occurs when air passes 
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over an airplane wing, or when blood flows through a heart valve.  Gradually, in the course of 
the last two decades, mathematicians realized what Cantor had seen dimly a century before: that 
ordered systems can create chaotic behavior, and that full understanding of complex systems 
requires a thorough understanding of the bizarre as well as the normal.  

Benoit Mandelbrot has been the leader in this new type of mathematics, known as the theory of 
"fractals".  Mandelbrot realized that one way to understand the strange behavior of some of the 
sets that Cantor and his successors had discovered was to view them as living in a fractional 
dimension--whence "fractals".  The indefinite wiggliness of a rocky coastline or of the 
membranes of the lung are natural phenomena best modeled by fractional dimensions:  the 
coastline is more than a bent one-dimensional line, but far less than a two-dimensional region, 
whereas the lung membranes are two-dimensional surfaces that fill the three-dimensional lung.  
The mathematical theory of fractals, which has led to stunning computer-generated pictures of 
artificial worlds, is a fulfillment of the initiative begun by Cantor in exploring the exceptional 
sets that originally existed only in his mind's eye.  

From Abstraction to Application  

Computers also began as only a gleam in the mind's eye--of Gottfried Leibniz and George Boole, 
of Alan Turing and Emil Post. Most persons today think of computers when they think of 
mathematics, often for inappropriate reasons.  Nevertheless, the innards of a computer are really 
nothing more than the actualization in rapid electronic switches of basic logical principles 
articulated also in the nineteenth century--by the English mathematician George Boole.  

Like Cantor, Boole studied sets.  But whereas Cantor pursued the bizarre and exceptional 
properties of sets, Boole concentrated on similarities, and regularities--on what mathematicians 
call isomorphisms.  He showed that basic operations on sets such as intersection and union could 
be mirrored in algebra, with addition and multiplication serving as the basic operations.  From 
this it became clear that set membership can be coded most easily in binary arithmetic--1 
represents inclusion, 0 exclusion. Hence binary numbers joined Boolean algebra as devices for 
calculating with the abstract structures of sets.  

Uncannily, the abstraction of Boole turned out to be precisely the tool required to model 
computer circuits. Now beginning students of computer science learn "masking" as a way of 
mixing electrical signals to reflect algebraic operations, and "shifting" as a mechanism for 
multiplying in binary arithmetic. As Cantor's sets provided the intellectual foundation for modern 
mathematics, Boole's algebras provided the electronic representation that enabled machines to 
embody this mathematics.  

Nowadays every school child learns a bit of the theories of Boole and Cantor.  Theories 
originally perceived as exotic and fanciful are indeed the foundation of our computer age.  But 
too often we seem to miss the fundamental lesson:  today's abstractions become tomorrow's 
applications.  

Heart valves and computers are part of the fallout of abstract set theory. Other applications 
abound in modern science and industry:  satellite communications use abstract number theory;  
robotics uses algebraic geometry;  particle physics relies on group theory;  oil refining uses 
projective geometry. The list could go on and on. The great lesson that mathematics has to 
contribute to liberal education is that the most abstract ideas are the most powerful and the most 
abstract thinkers the most versatile.  
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 Mathematics in the Curriculum 

That theory can be pragmatic runs against the grain of our nineteenth century roots, and against 
the prevailing spirit of American education even today, 100 years later.  Idealists cling to the 
classical traditions of liberal education--to awaken one's intellect, to develop one's imagination, 
and to marshal one's spirit.   But students in overwhelming numbers choose pragmatism:  
business administration and engineering are more popular on today's campuses than all the 
liberal arts and sciences combined.  

Because mathematics can be practical, it is generously supported in public opinion of educational 
expectations.  But what the public wants is the mathematics of the checkbook:  how to balance it, 
and how to fill it.  The abstract mathematics that is rooted in the theories of Cantor and Boole, 
although essential for any sophisticated practical application, is not in the public view: this 
mathematics is part of our invisible culture.  

The fact that not even educated persons know about deep mathematics since the age of Newton 
renders current discussion of the role of mathematics in liberal education particularly incoherent. 
Large numbers of students study mathematics to advanced levels for its direct practical benefit--
it helps them pass chemistry, which will help them get into medical school.   Still others 
substitute computer science for mathematics, believing naively that one can master these 
machines without learning their language.   Those majoring in the humanities and arts frequently 
take mathematics only under duress, suffering through a required "Mathematics for Liberal Arts" 
course that provides a mix of games and trivial applications selected not so much for their 
centrality to mathematics as for their lack of prerequisite knowledge.   And in some institutions 
students are now required to pass a mathematical or quantitative literacy examination whose 
level usually approximates the syllabus of a good junior high school mathematics course.  

This chaos is not all the fault of higher education.  In no other subject is the background of 
entering freshman so diverse. On the one hand, about a hundred thousand students enter college 
each year with some calculus under their belt;  the very best of these students--a few dozen in the 
whole country-- are prepared, as freshmen, to begin graduate work in mathematics.  

On the other hand, each year a hundred thousand workbooks on arithmetic "for college students" 
are published and sold in the United States--covering the standard mathematics syllabus of 
elementary school. In some respects we are right where we began a century ago, trying in vain to 
require knowledge of "vulgar arithmetic" for entrance to college.  

Overall, the prevailing role of mathematics in American higher education is little changed from 
nineteenth century America.  Students study mathematics for its immediate practical benefit, not 
as part of the scholarly and cultural heritage of the liberal arts and sciences.  This attitude--which 
we as teachers of mathematics exploit because it keeps our classes full--maintains the veil of 
secrecy that has insulated the educated man from even passing acquaintance with modern 
mathematics.  

The Arcane Art of Mathematics 

Jerome Bruner said somewhere that an educated man must not be dazzled by the myth that 
advanced knowledge is the result of wizardry.  Unfortunately, mathematicians and educators 
conspire to maintain this myth for mathematics.  Students don't want to understand why it works:  
they only want to know how to use it.  Mathematicians don't want to make the effort to explain 
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their field to laymen;  they are content to do their research and talk to other experts.  The result, 
predictably, is a public perception of mathematics as inexplicable and arcane.  

In alchemy, the arcane represented a profound secret of nature.  Indeed, in this age, most 
profound secrets of nature are expressed in mathematical terms.  Because the alchemists always 
associated great mystery with the arcane, it soon came to symbolize as well an elixir, a type of 
marvelous remedy.  The same thing has happened in this age: many scientists, especially social 
scientists, find that the best remedy for an ailing theory is a mysterious dose of numbers and 
statistics.  Mathematics provides for soft science what one mathematician described as 
"mystification, intimidation and an impression of precision and profundity." Mathematics is the 
elixir of the scientific age.  

Despite the significance of the mathematical sciences in our technological society, the distance 
between the research frontier and public understanding is probably greater in mathematics than 
in any other field of human endeavor.  In virtually all other areas of science, the educated public 
is aware in a rudimentary fashion of major twentieth century contributions:  most people have at 
least a vague understanding of black holes, genetic engineering, and microprocessors, even 
though they neither understand nor care to understand such things in detail.  

In contrast, public vocabulary concerning mathematics is quite primitive:  it is not a decade, not a 
century, but a millennium out of date. Explaining what is actually happening in contemporary 
mathematical science to the average layman is like explaining artificial satellites to a citizen of 
the Roman Empire who believed that the earth was flat.  

The typical public attitude towards mathematics is an anomalous mixture of disinterest and awe. 
Although the average citizen speaks in wondering tones about his genius nephew who scored 
800 on his mathematical aptitude test, he appears proud of his own ignorance of things 
mathematical:  "I never did understand percentages."  Even well-educated people who wouldn't 
dare admit in public that they have never heard of Keynesian economics will brag of their lack of 
understanding of statistics or calculus.  By and large non-mathematicians do not value 
mathematical knowledge enough to regret their ignorance of it.  For the most part, the average 
citizen is content to leave its arcane workings to an inner sanctum of wizards.  

Mathematical Literacy 

Ten years ago the astronomer Benjamin Shen identified three aspects of literacy in science--
practical, civic, and cultural. These levels apply as well to mathematical literacy and provide a 
convenient framework for understanding the challenges we face.  

Practical literacy is that knowledge that can be put to immediate use in improving basic living 
standards.  The ability to compare loans, to figure unit prices, to manipulate household 
measurements, and to estimate the effects of various rates of inflation brings immediate real 
benefit.  

Civic literacy involves more sophisticated concepts, namely those that would enhance public 
understanding of legislative issues. Major public debates on nuclear deterrence, economic policy, 
and public health frequently center on scientific issues.  Inferences drawn from data, projections 
concerning future behavior, and interactions among variables in complex systems involve issues 
with essentially mathematical content.  A public afraid or unable to reason with figures is unable 
to discriminate between rational and reckless claims in the technological arena.  
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Cultural literacy, the most sophisticated of these three levels, involves the role of science or 
mathematics as a major intellectual achievement.  Because cultural literacy lacks an immediate, 
practical purpose, its appeal will be limited largely to a small subset of the intellectual 
community.  When one considers that the total readership of cultural magazines such as Harpers 
and Scientific American is about one-half of one percent of the U.S. population, a cultural 
approach to mathematical literacy will hardly contribute much to general public understanding of 
esoteric research.  Yet, to be honest, this is the only level on which the arcane research of 
twentieth century mathematics can truly be appreciated--as an invaluable and profound 
contribution to the heritage of human culture.  

Liberal Education 

Liberal education should be one of society's most effective tools for promoting cultural literacy--
whether about art or literature, science or mathematics.  It is certainly not the only such tool, but 
it is the most important one since it provides for most people the first significant exposure to our 
cultural traditions. When successful, liberal education renders the arcane plain, and reduces 
wizardry to understanding. Unfortunately, especially when dealing with the mathematical 
sciences, it too often does just the opposite.  

Hardly anyone today would claim that liberal education is particularly effective in promoting 
mathematical literacy on any of Shen's three levels. Instead of emphasizing major current issues 
and research frontiers, texts for those courses whose central purpose is mathematical literacy, 
(that is, survey courses for humanities students) focus on elementary and trite topics designed to 
illustrate the precision of definition, theorem, and proof. Perhaps the only thing worse than texts 
on mathematical literacy are those on computer literacy:  whereas the former dwell excessively 
on the arcane and eccentric, the latter dwell primarily on the ephemeral and inconsequential.  

Too often these days the general public views computer literacy as the appropriate modern 
substitute for mathematical knowledge.  Unfortunately, this often leads students to superficial 
courses that emphasize vocabulary and experiences over concepts and principles.  The advocates 
of computer literacy conjure images of an electronic society dominated by the information 
industries.  Their slogan of "literacy" echoes traditional educational values, conferring the aura 
but not the logic of legitimacy.  

Typical courses in computer literacy, however, are filled with ephemeral details whose 
intellectual life will barely survive the students' school years.  These courses contain neither a 
Shakespeare nor a Newton, neither a Faulkner nor a Darwin; they convey no fundamental 
principles nor enduring truths.  Such courses do not leave students well prepared for a lifetime of 
work in the information age.  

What is Mathematics? 

My concern, however, is not so much with computer literacy as with mathematical literacy. It is 
common now to include under the umbrella of mathematics (or mathematical sciences) such 
diverse quantitative and theoretical disciplines as logic and statistics, mathematical economics 
and theoretical physics--in addition, of course, to the traditional core of mathematics as defined 
by the school subject of that name. The term "mathematical sciences" is in some sense a more 
accurate term, juxtaposing as it does the implied tension of a priori reasoning characteristic of 
mathematics with the a posteriori reasoning that characterizes empirical science.  
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The mathematical sciences are a diverse and very loosely knit collection of pure and applied 
disciplines united only by a special focus on abstract structure.  They include: 

• Analysis, the representation of continuous change growing out of calculus that forms the 
fundamental tool of classical engineering and mathematical physics;  

• Statistics, the theoretical basis for medical research, environmental studies, and political 
polls;  

• Mathematical Logic, the theoretical basis of computer science, as well as the foundation 
of mathematical truth;  

• Operations Research, the application of mathematical techniques to problems of 
industrial and economic optimization;  

• Group Theory, the abstract representation of symmetry, now used to model the structure 
of crystals and to organize the fundamental constituents of matter;  

• Computer Science, the study of algorithms, programming languages, and data structures;  
• Graph Theory, the representation of relationships required for computer design, 

information networks, and transportation systems;  
• Topology, the abstract study of geometric form, now used to explore the geometry of the 

universe, the evolution of living things, and the dynamics of the economy. 

The point of this list is not completeness but variety. Mathematics today is more than just 
algebra, calculus and Euclidean geometry.  The mathematical sciences are a vast, sprawling 
complex of subjects united more by research methodology than by common content.  Although 
their influence on society is frequently hidden from public view, the mathematical sciences have 
shaped our world in fundamental ways and continue to exert profound yet indirect influence in 
virtually every aspect of our daily lives.  

Just as two centuries ago, before Darwin, the educated public believed that forms of life were 
static, so today the educated public assumes that the forms of mathematics are static, laid down 
by Euclid, Newton and Einstein. Students learning mathematics from contemporary school and 
college textbooks are like the pupils of Linnaeus, the great eighteenth century Swedish botanist:  
they see a static, pre-Darwinian discipline that is neither growing nor evolving.   Learning 
mathematics for most students is an exercise in classification and memorization, in labeling 
notations, definitions, theorems, and techniques that are laid out in textbooks as so much flora in 
a wondrous if somewhat abstract Platonic universe.  

Students rarely realize that mathematics continually evolves. Notations change;  conjectures 
emerge;  theorems are proved; counterexamples are discovered.  Indeed, the passion for 
intellectual order combined with the pressure of new problems-- especially those posed by the 
computer--force researchers to continually create new mathematics and archive old theories.  

Here, for example, is a brief list of some major accomplishments of mathematics in the last 
decade.  For non-specialists it will appear largely as a list of names and topics without special 
significance.  These advances in the mathematical sciences are as important and as profound as 
the comparable discoveries of the same decade in cosmology and genetic engineering, but they 
have been largely invisible to the educated person: 
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1975  Effective solution of the Radon transform, leading to the computerized axial 
tomography (CAT) scanners.  

1976  Solution to the Four Color Problem, the first major theorem of mathematics to be 
proved with essential aid of a computer.  

1977  Beginning exploration of fractals, the world of intermediate dimension that yields 
fantastic graphic representations of iterative processes.  

1978  Solution of the famous Serre conjectures in algebraic number theory.  
1979  Discovery by a Russian mathematician of a new "ellipsoid" algorithm for solving 

linear programming problems.  
1980  Completion of the century-long quest for a complete classification of the finite simple 

groups.  
1981  Proof of the four-dimensional Poincare conjecture, which led to the discovery of new 

models for space-time not isomorphic to the ordinary one.  
1982  Implementation of "public key" cryptography schemes based on one-way algorithms in 

number theory and combinatorics.  
1983  Proof of an old conjecture by Mordell concerning the number of integer solutions to 

polynomial equations.  
1984  Solution of the Bieberbach conjecture concerning the rate of growth of coefficients in 

analytic functions.  
1985  Development of a new method based on elliptic curves for factoring vary large 

numbers.  

The symbiosis of computer science and mathematics provides powerful evidence that 
mathematics is not just a static discipline, but is continually created in response to challenges 
both internal and external.  Students today, even beginning students, can learn things that were 
simply not known twenty years ago.  We must not only teach new mathematics and new 
computer science, but we must teach as well the fact that this mathematics and computer science 
is new.  That's a very important lesson for students to learn.  

Focus on the Significant 

Learning that mathematics is alive is not, however, sufficient.  We must also prepare our students 
to live with mathematics, and with those who use it.  The issues of greatest mathematical 
significance in liberal education are those surrounding the question of wizardry:  how can we 
insure that educated men and women are not left defenseless by the thousands of mathematical 
wizards who control the mechanisms of modern science and society?  There are many ways to do 
this, none of them particularly easy:  

• Emphasize fundamental understanding of important principles from various parts of 
mathematics--the central limit theorem of statistics, the fundamental theorem of calculus, 
the duality principle of linear programming.   Deep ideas have lasting importance and 
resonate with related results in other fields.  

• Stress important links between mathematics and other disciplines of liberal learning.  The 
mathematical sciences are used not only in physics and engineering, but also in such 
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diverse fields as linguistics and biology, economics and cognitive science, politics and 
art.  

• Focus on big issues, to separate the forest from the trees.  Such contemporary endeavors 
as artificial intelligence and cognitive science use mathematical principles to promote 
innovative research in the nature of mind and the capabilities of cognition.  
Interdisciplinary fields such as these are attractive to students and often employ 
significant mathematical components as abstract bridges that connect different scientific 
islands.  

• Build mathematical models into the teaching of science. To present science without 
mathematics is to present results without reasoning, conclusions without evidence.  
Doing this fails to communicate the natural symbiosis between the scientific method and 
mathematical modeling, and distorts in the student's mind the nature of scientific inquiry.  

• Examine ethical issues involved in the applications of mathematics.  Who is responsible 
when decisions that affect social and military policy are based on computer projections 
that in turn have been developed by programmers and mathematicians who introduce 
hidden assumptions and unwitting errors?  How can democracy function if the bases of 
facts and decision are veiled by the secrecy of technical mathematics?  

• Stress the complexity of complex systems, showing how order can create disorder 
(turbulence), and vice versa (stochastic processes).  The study of complexity has emerged 
as one of the major interdisciplinary themes of scientific research, but to be more than 
fluff it must be rooted in solid mathematics. 

We should, in short, emphasize in liberal education the human and humane parts of mathematics.  
As computers gain greater facility in doing routine calculations, major parts of what students 
usually learn from the traditional mathematics curriculum will in the future be done by computer 
programs. So there is simultaneously less need for individuals to carry out routine tasks, yet 
increased need for individuals of global vision who understand the behavior of complex systems.  

It is wrong but all too easy to focus a major part of undergraduate mathematics on topics that 
only teach students to do what computers can do better.   It is insufficient if not deceitful to focus 
instead on how to use computer systems and interpret their results, since too often this practice 
substitutes one set of wizards (programmers) for another (mathematicians).  

For the vast majority of students interested in fields other than the mathematical sciences we 
must develop a new approach that is adequate to educate a generation of leaders who will live 
and work in an environment dominated by computers. Our students need the qualities of  

Literacy--to communicate with the wizards  
Confidence--to engage difficult technical issues  
Skepticism--to ask the right questions  
Persistence--to insist on appropriate answers  
Judgment--to select what is right 

I wish I knew how to provide these qualities, but I don't.  Perhaps in tomorrow's workshops you 
can make a start on this agenda. 

  


