
AMonstrous Piece of Research 
Discovery of the 'monster 
group' helps complete 
mathematicians' program to 
classify the simple groups 

BY LYNN ARTHUR STEEN 

Mathematics is not an empirical sci- 
ence, but it shares with science one of the 
most powerful paradigms by which we 
come to understand the structure of 
things: identification of fundamental 
building blocks from which all objects of a 
certain type can be constructed. The pre- 
mier example, of course, is the periodic 
table of elements, a classification of primi- 
tive components out of which all sub- 
stances can be formed. The physicists' 
search for elementary particles is another 
example, as is the mathematicians' identi- 
fication of prime numbers as the basic 
factors of all whole numbers. 

Another lesser-known example has 
preoccupied mathematicians throughout 
the twentieth century -the classification 
of finite simple groups. Since groups are of 
profound importance in both mathemat- 
ics and science, enormous effort has been 
devoted to completing this complex struc- 
tural puzzle. In recent months the final 
pieces of the puzzle have been identified 
and put in their proper places. The classi- 
fication program is now complete, except 
for final written reports on the recent 
work. When all details are down on paper, 
it will represent one of this century's 
major mathematical achievements - 
more than 5,000 journal pages of detailed 
proofs and classification arguments. 

Groups are abstract representations of 
symmetry. They were introduced in the 
early nineteenth century by the radical 
young French mathematics student 
Evariste Galois as a device to solve one of 
the most vexing mathematics problems of 
his age: to discover a formula for solving 
polynomial equations of degree greater 
than four. The quadratic formula (now 
taught in high school algebra) solves 
equations of degree two, and similar but 
more complex formulas were developed 
in the late Renaissance to solve equations 
of degrees three and four. But by 1800, 
three centuries after these formulas had 
been discovered, no one had been able to 
find a formula for polynomial equations of 
degree five or greater. 

Galois showed - in notes scribbled 
down the night before he died in a duel at 
the age of 20-that no such formula could 
exist: The possible symmetries (or permu- 
tations) of the roots of fifth degree 
polynomial equations exceed in complex- 
ity the symmetries that can be repre- 

sented by algebraic formulas based on the 
four arithmetic operations and extraction 
of roots. The structure of these permuta- 
tions forms what is called a permutation 
group. Since the two, three or four roots of 
polynomial equations of degree less than 
five can be permuted only in a small num- 
ber of ways, the permutation groups of 

these equations are rather simple and can 
be adequately represented by arithmetical 
formulas. But the number of permutations 
of the five roots of a fifth degree equation 
is 120. The complexities within such a 
large symmetry group are, as Galois 
showed, far beyond the expressive capa- 
city of arithmetical formulas. Amazingly, 

The Cyclic Group of Order 5 
Let five objects be represented by the numbers I, 2, 3, 4, 5, in order. A cyclic permutation 

of these objects, denoted by p, yields the order 2, 3, 4, 5, 1. Repeating this yields 3, 4, 5, 1, 2. 
Since this permutation can be achieved by applying the cyclic permutation p twice to the 
original set, we call it by the name p2. 

Continuing in this manner yields p, p2, p3, p4, and finally p5, which is the identity permutation 
-since after five successive cyclic permutations the original order of the numbers I, 2, 3,4, 5 
will be restored. Hence p5 is denoted simply by 1, representing the identity. 

These permutations form the cyclic group of order 5-one of the simple groups that are to 
finite groups what atoms are to molecules. The operation table of this group resembles a small 
multiplication table -which, in a way, is exactly what it is: 

p p2 p3 p4 

p p2 p3 p4 
p p p2 p3 p4 1 

p2 p2 p3 p4 I p 

p3 p3 p4 I p p2 

p4 p4 I p p2 p3 

This group also represents the rotational symmetries of a regular pentagon: let p signify 
rotation by 720, which will cause the vertices of the pentagon to shift one step counterclock- 
wise. Five successive rotations, yields 360? or p5, the identity: all vertices are back where they 
started from. "Symmetry" here denotes that the pentagon did not change its shape under 
these rotations although the vertices changed position. Other kinds of "symmetric transfor- 
mation" are possible, and they can operate on far more complicated figures than this. 

4 3 2 1 5 4 

5 3 4 2 3 1 2 5 1 4 5 3 

The cyclic group of order 5 also represents the symmetries of the solutions of the fifth 
degree equation x5 = 1, since the five fifth-roots of I are complex numbers located at the 
corner of a regular pentagon centered at the origin of the complex plane. The first of these 
roots, traditionally called co, can be expressed as a complex number in the form 
co = cos( ) + i sin(+) = cos 720 + i sin 720. 

The other four roots are just multiples of co: Co2, Co3, Co4 and w)5, which is, naturally, I. 
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An Alternating Group 
Let five objects be represented by the letters A, B, C, D, E. An even permutation of these 

objects occurs when an even number of pairs are interchanged. For example, if A and C are 
interchanged, as well as D and E, the order becomes C, B, A, E, D. This permutation is called a 
double transposition; if it is repeated the original order will be restored, so this permutation is 
said to have period 2. 

The alternating group on 5 elements consists of all even permutations, such as the one 
illustrated above. There are 60 such permutations: 

I Identity, leaving all letters unchanged, with period 1. 
15 Double transpositions (such as A &-> C, D*-- E), each of period 2. 
20 Cyclic permutations of three letters (such as A -> C -- D -- A), each of period 3. 
24 Cyclic permutations of five letters (such as A -> C -* E B -> D -* A), 

each of period 5. 
60 Total even permutations of five letters. 

This group also represents the rotational symmetries of a regular icosahedron, the platonic 
solid with 20 equilateral triangular faces. 

There are 60 rotations of the icosahedron that cause the vertices and faces to shift to 
new locations: 

I Identity, leaving all vertices unchanged, with period 1. 
15 Rotations of 1800 about lines joining midpoints of pairs of opposite faces, each of period 

2. 
20 Rotations of 1200 about lines joining centers of opposite faces, each of period 3. 
24 Rotations of 720 about lines joining opposite vertices, each of period 5. 
60 Total rotational symmetries of the icosahedron. 

The alternating group on five objects also represents symmetries of the roots of certain 
fifth degree polynomial equations. By showing that this group was simple (roughly speaking, 
that it could not be factored into smaller groups for which algebraic solutions might be 
possible), Niels Henrik Abel in Norway and Evariste Galois in France showed (independently 
and concurrently) that it is impossible to solve the general fifth degree polynomial equation. 

the young Norwegian mathematician Niels 
Henrik Abel developed concurrently yet 
independently a similar solution to the 
problems of polynomial equations. 

Galois and Abel's idea of a permutation 
group lay fallow for nearly half a century, 
until the Norwegian mathematician 
Sophus Lie used the same strategy to ex- 
plain why certain elementary differential 
equations could be solved, whereas others 
could not be. These efforts led to a pro- 
ductive theory of what are now called Lie 
groups, which link the discrete structure 
of permutations with the continuous 
variation of differential equations. 

The definition of a group incorporates 
the most basic behavioral features of 
mathematical functions and operations, 
so in some sense it is the most fundamen- 
tal structure in algebra. It also provides an 
apt idiom for expressing geometric fea- 
tures such as rotation, reflection and 
symmetry. Since groups represent a con- 
fluence of fundamental patterns from 

major branches of mathematics, it is not 
surprising that their structure contains 
the key to many diverse phenomena. 

In this century the role of group theory 
in both pure and applied mathematics has 
grown enormously. A major family known 
as the linear groups, introduced at the turn 
of the century by the U.S. mathematician 
Leonard Dickson, has turned out to be of 
crucial importance in the classification of 
elementary particles; indeed, these 
groups provided much of the theoretical 
basis for the work that led to the 1979 
Nobel Prize in Physics. The ability of 
groups to capture the subtle essence of 
symmetry has made them no less useful to 
chemists working in crystallography and 
spectroscopy: Results from group theory, 
for example, enabled Rosalind Franklin, 
James Watson and Francis Crick to reduce 
from the infinite to the manageable the 
number of possible arrangements of mol- 
ecules in their search for the structure of 
DNA. 

Groups come in two types - finite and 
infinite. The symmetry group of the roots 
of a polynomial equation is a finite group, 
because there are only a finite number of 
permutations possible among the roots of 
a specific polynomial. In contrast, the Lie 
groups that represent symmetries of so- 
lutions of differential equations are infi- 
nite because they involve continuous 
transformations, and continuity carries 
the potential of an infinite number of 
changes. The classification of the infinite 
Lie groups was completed early in this 
century, but the full details of the classifi- 
cation of finite groups are still unfolding. 

Finite groups can be built up from com- 
binations of smaller groups by a process 
analogous to multiplication: As each 
whole number can be expressed as a 
product of prime numbers, so each finite 
group can be expressed as a combination 
of certain factors known as simple groups. 
Simple groups are the ones that cannot be 
factored; they are the irreducible con- 
stituents of all finite groups. The classifi- 
cation problem for finite group theory is 
this: find all finite simple groups. 

At the turn of the century the finite sim- 
ple groups of order (or size) less than 
2,000 were all known; by 1963 the classifi- 
cation had been completed up to order 
20,000; by 1975 it had been completed 
through order 1,000,000. The results of this 
effort produced a tentative picture of sim- 
ple groups, which has been confirmed by 
all subsequent research. 

Most simple groups belong to one of 
three major families: the cyclic groups, the 
alternating groups or groups of Lie type. 
Cyclic groups consist of cyclic permuta- 
tions of a prime number of objects. Alter- 
nating groups consist of even permuta- 
tions - those permutations that are 
formed by interchanging the positions of 
two objects an even number of times. (The 
collection of all permutations also forms a 
group, but it is not a simple group since it 
contains the alternating group as a factor.) 
Sixteen subfamilies comprise the simple 
groups of Lie type, each associated with a 
family of infinite Lie groups. (The termi- 
nology gets rather confusing: A Lie group 
is not a group of Lie type, since the former 
is infinite and the latter is finite.) Alto- 
gether there are 18 specific families of fi- 
nite simple groups. 

Unfortunately some simple groups, 26 
to be exact, do not belong to these fami- 
lies. The first five of these so-called spo- 
radic groups were discovered in the last 
century by Emile Mathieu. Remarkably, 
from 1900, when the fifth Mathieu group 
was shown to be simple, until 1966 every 
other simple group that was discovered 
belonged to one of the three major fami- 
lies -cyclic, alternating or Lie type. 

More than fifty years ago the British 
mathematician William Burnside conjec- 
tured that, apart from the cyclic groups, all 
finite simple groups have an even number 
of elements. This fundamental insight, so 
important for the general classification 
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program, remained unverified until 1963, 
when Walter Feit of Yale University and 
John G. Thompson of Cambridge Univer- 
sity proved it in a massive, virtuoso dis- 
play of group-theoretic technique. Their 
proof, more than 250 pages long, was full 
of new methods and tools; it launched an 
intensive effort to complete the classifica- 
tion program. 

Thompson led the assault with a 400- 
page analysis - published over a seven- 
year period from 1968 to 1975 showing 
how the structure of a major class of 
groups (called solvable groups, a term 
going back to Galois's use of groups to 
investigate solutions of polynomial 
equations) could be used to infer the 
structure of the finite simple groups. But 
during the same period various inves- 
tigators discovered more sporadic groups, 
one after the other, in a rush that seemed 
destined to undermine the entire enter- 
prise with more exceptions than rules. 

Some of the most interesting of these 
new groups were discovered by John Hor- 
ton Conway of Cambridge University using 
techniques based on geometric consid- 
erations dealing with efficient packing of 
objects (spheres) into boxes in 24-dimen- 
sional space. Inexplicably, Conway's 
largest group contains many of the other 
sporadic groups as subgroups, suggesting 
a family structure for sporadic groups that 
has not yet been discovered. 

The symmetries reflected in the spo- 
radic groups have found important appli- 
cation in the design of error-correcting 
codes. Special patterns in codes allow 
data obscured by noise to be recon- 
structed, so these "error-correcting" 
codes have been widely used in crucial 
military and space applications. Selecting 
a good code turns out to be equivalent to 
picking a collection of spheres that touch 
a given one but which are as widely spaced 
as possible. The symmetries of these pat- 
terns in 24-dimensional space yield one of 
Conway's sporadic groups, and also give a 
particularly efficient error-correcting 
code. 

The most exotic of these new sporadic 
groups was one introduced by Bernd 
Fischer and Thompson in 1974, and was 
nicknamed the "monster." Fischer and 
Thompson did not actually discover the 
group; they merely found evidence sug- 
gesting that such a group might exist. Like 
cosmologists investigating black holes, 
Fischer and Thompson used properties of 
the known simple groups, together with 
the massive body of theory that had 
emerged in the classification effort, to 
identify a possible new sporadic group of 
enormous size. Its existence was consist- 
ent with all known information. Thus was 
launched the great "monster" search-to 
find the missing sporadic group. 

The difficulty with this search was that 
the "monster" is unimaginably big. Ac- 
cording to Fischer and Thompson's calcu- 
lations, it should contain 808,017,424,794,- 
512, 875, 886, 459, 904, 961, 710, 757, 005, 754,- 

368,000,000,000 elements! If they were 
right, if this group really did exist, then 
there would be good reason to believe that 
the theory leading to the prediction of this 
group is also right. And that theory, be- 
lieved by most mathematicians who have 
worked on the classification problem, 
suggests that the "monster" is the last of 
the finite simple groups. 

In mid-January of this year Robert 
Griess, of the University of Michigan, while 
working at the Institute for Advanced 
Study in Princeton, discovered the "mons- 
ter," officially known as the sporadic group 
F, in honor of Fischer, who predicted it. 
Despite its size, or, more accurately, be- 
cause of its size, Griess did not use any 
computer assistance in working out the 
proof that F1 exists. It is unlikely that any 
computer could ever manage the calcula- 
tions necessary to analyze a group of this 
size. Griess used existing theory to control 
carefully the calculations necessary to 
work out its properties and to confirm that 
such a group does indeed exist. Armed 
with knowledge of its properties and con- 
firmation of its existence, he was able to 
locate it in a certain high dimensional Eu- 
clidean space. Specifically, he showed that 
it is a group of rotations in a space of 
dimension 196,560. 

Griess's discovery of the monster con- 
firmed the directions of current research 
and provided renewed momentum for the 
final sprint in this extraordinary endeavor. 
The final results were obtained this sum- 
mer in an exchange of correspondence 
between Michael Aschbacher of the Cali- 
fornia Institute of Technology in Pasadena, 
Calif., and Daniel Gorenstein of Rutgers 
University in New Brunswick, NJ., and dis- 
cussed avidly by group theorists attending 
the annual summer meeting of the Ameri- 
can Mathematical Society in Ann Arbor, 
Mich. Although full details of the final 
steps have not yet been published, those 
in the inner circle of finite group theory 
research have checked each other's work 
and believe that the program is complete. 

A single theorem with a proof exceeding 
5,000 pages is without precedent in math- 
ematical history. Gorenstein admits that 
the written proof, when completed, will 
inevitably contain certain local gaps - 
mistakes in reasoning, omitted steps - 
that break the logical chain of proof. But 
researchers in this field, like those who 
worked on the four-color problem - 
another problem with an extraordinarily 
long proof - know from experience that 
these short gaps can always be bridged by 
routine application of known methods. 
This assurance does not constitute the 
kind of absolute proof idealized by tra- 
ditional Euclidean geometry. But it is typi- 
cal of many parts of contemporary math- 
ematics research - a conviction by a 
small group of experts, based on extensive 
experience, that whatever gaps may be 
discovered can always be closed. Proof, in 
this case, resides primarily in the mind of 
the expert.O 
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