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A new perspective on infinity

LR s e |

AN AN
N AN AN
y L B B LI | l;‘l

Three centuries after Newton’s introduction of infinitesimal calculus as a tool of mathematics, a new

“non-standard” analysis provides a different view of the infinitely large and the infinitesimally small,

and their relation to the finite world

Man lives in a finite world, but his

Lynn A. Steen
imagination does not. While our

is professor of

mathematics at Saint supply of coal and oil and even
%?:niggteage’ Northfield, gyplight is limited, our supply of

time and space is not. To under-
stand a finite natural world, scien-
tists create conceptual structures with infinitely many
dimensions. Against the certainty of death, theologians
speak of eternal life. The flights of man’s fancy transcend
the perceived reality of his world, conjuring visions of
infinite structures far beyond the range of mnormal
experience.

Infinite numbers and infinite sets inhabit a large but
little-explored corner of the man-made universe of mathe-
matical ideas. Because they are figments of man’s imagina-
tion with no basis in observable fact, the infinitely large
and infinitely small have puzzled mathematicians, scientists
and philosophers for centuries. But in recent years an
invisible revolution in the abstract world of higher mathe-
matics has produced a totally new perspective on the con-
cept of infinity. This new interpretation, created largely by
the late Abraham Robinson of Yale University, promises
to resolve one of the longest debates in scientific history
and to provide a major new tool for both the pure and
applied mathematical sciences.

By using esoteric techniques of mathematical logic,
Robinson showed that the very reasoning processes that

make mathematical thought possible must also make pos-
sible the existence of conceptual models that contain both
infinitely large and infinitely small numbers. These new
mathematical models, called “non-standard”’” models in
contrast to the more traditional ‘“standard” ones taught in
university mathematics courses, have excited both mathe-
maticians and scientists because they offer for the first
time a real possibility of computing with infinite numbers.
Physicists and economists, for example, must often
resort to manipulation of non-existent and sometimes
undefinable infinite objects in order to get the results they
need. Physicists use infinite volumes to express precisely
certain subtle concepts of heat and electrical energy, while
economists talk of idealised economies with infinitely many
traders as a means of coping with the astonishing com-
plexity of real but very large economies. Standard means
of building these models rely on indirect constructions that
are difficult to comprehend and foreign to even a sophisti-
cated mathematical intuition. Non-standard models, how-
ever, provide direct access to the required infinite con-
cepts, and do so in a manner that preserves the momentum
of scientific intuition built up in simpler, better-understood
finite models. ‘
Ordinary economic models, for example, are wusually
based on an assumption that no individual agent has more
than an infinitesimal influence on the course of the
economy as a whole. No ordinary trader on the stock
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exchange will influence the price of the stock by his trade,
yet the cumulative effect of a large number of individual
trades does cause a change in price. This aggregation of
insignificant effects is difficult to represent in mathematical
form, and even more difficult to grasp in a useful, intuitive
form. Non-standard methods, however, make it possible
to represent the change in price as the result of infinitely
ma(tlly infinitesimal influences exerted by the individual
trades. )

Mathematicians too are excited by non-standard models
because they reveal new and profound insight into the
general process of building the abstract models studied in
higher mathematics. They show, in particular, that the
models and constructs with which mathematicians routinely
work are not absolute and universal, but are intimately
related to the nature and power of the language in which
all mathematics is expressed. Mathematical models—from
the whole numbers every child learns at school to advanced
calculus and beyond—are, in some sense, just very power-
ful figures of speech. The medium moulds the message, so
to speak, in the mysterious world of higher mathematics.

Confusion concerning the nature of the infinite arose as
soon as man attempted to impose his mental order on the
world in which he lived. In the 4th century BC, the Greek
skeptic Zeno delighted in confounding his supposedly
sophisticated colleagues with paradoxes of motion. A mov-
ing object like an arrow cannot actually traverse any dis-
tance during one instant (or point) of time. So how then
can it ever move? If you add together even infinitely many
instants, during each of which the arrow has not covered
any ground, how can you get the large distance that is
actually determined by the arrow’s path? Zeno asked, in
short, whether it is possible to add up infinitely many
infinitely small things.

This is exactly what is done in the subject of calculus,

the formal entry to the field of higher mathematics. In
fact, calculus used to be called “infinitesimal calculus”,
especially in the years shortly after its creation by Isaac
Newton and Gottfried Leibniz in the latter part of the 17th
century, because one of its central themes is the aggrega-
tion of infinitely many infinitely small rectangles to com-
pute areas of regions with curved sides.
" Despite the enormous success of calculus, it has been
plagued for three centuries by a serious logical flaw: the
notion of an infinitesimal (that is, an infinitely small num-
ber) contradicts the basic axioms of numbers. Zeno sensed
this in posing his paradoxes. Aristotle, following Zeno,
argued firmly that reasoning with infinitely large or
infinitely small numbers is absurd—because it necessarily
leads to paradoxes and contradictions. Leibniz tried to
avoid the stigma of employing logically contradictory
notions by calling his infinitesimals “useful fictions”, but
Newton’s critic Bishop Berkeley dismissed them as ‘“ghosts
of departed quantities” and went on to argue that anyone
who could believe in them need not be ‘“squeamish about
any point in divinity”.

The problem with infinitesimals—first articulated pre-
cisely in the latter part of the 19th century—is that they
are neither large enough to behave like positive numbers,
nor small enough to act as if they are truly zero. One of
the fundamental properties of numbers is that if you add
together sufficiently many of them, no matter how small
they are, you can get enormously large numbers. That is
how gross national products measured in trillions of
dollars are formed from each person’s two-cents-worth of
contribution, and how astronomical distances can be
measured using simple units such as inches or centimetres.

But by its very nature an infinitesimal (that is, an
infinitely small number) cannot have this property. No
matter how many infinitesimals you add up, the sum will
always remain infinitesimally small. The only infinitely
small number alloWed in the classical theory of ordinary

mathematics is the number zero—and adding up lots of
zeroes never gets you anywhere. -Yet those who used
infinitesimals (in calculus, for instance) required that they
be large enough to add up to specific numbers (areas, for
instance) while still small enough to behave like zero in
other contexts.

In the latter part of the 19th century, mathematicians
finally fought their way out of the thicket of contradictions
at the base of calculus and proposed an elaborate theory
that re-explained all the concepts involved in calculus—
indeed, in nearly all parts of mathematics—without resort-
ing to any mention of either infinitely large or infinitely
small numbers. In the 20th century mathematics has been
governed entirely by the tenets of this ‘“classical”
analysis: a firm understanding of the 19th century
“infinitesimal-less” theory of calculus is still a basic pre-
requisite for admission to any graduate school in mathe-,
matics.

A radical reinterpretation

As countless former students of calculus will testify,
ordinary ‘“‘classical” analysis is a strong brew. It has been
distilled from three centuries of work originating in the
towering genius of Isaac Newton. Yet for all its sophistica-
tion classical analysis completely fails to explain the intui-
tive power of infinitesimals. This is what the new ‘“‘non-
standard” analysis achieves: by a radical reinterpretation
of the language of mathematics, non-standard analysis
restores respectability to reasoning with infinitesimals. It
does this by building not only on the foundation of classical
analysis, but also on the ethereal yet profound concepts of
20th century logic.

The conduct of logical reasoning from premises conclu-
sions is one of the profound legacies of ancient Greek
culture. All scientific and philosophic analysis fits this intel-
lectual template, not least mathematics. Indeed, the
archives of mathematics consist largely of various systems
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of carefully stated axioms, deductions that follow logically
from them, and models that conform.to the axioms. Non-
standard analysis is, roughly, a new model for old axioms.

Since a mathematical model is simply a mental con-
struct, it must be specified in great detail in order to insure
that all persons will have the same thing “in mind” when
reasoning with the model. Mathematicians cannot rely on
empirical examples as the basis for the objectivity of their
science. But neither can they rely solely on the power of
the axiomatic method. In 1931 Kurt Godel showed that no
system of axioms can describe completely and unam-
biguously a sophisticated and complex model: no matter
what axioms we write down for, say, elementary arith-
metic, there will be arithmetical statements that are true
in the intended model but cannot be proved on the basis
of the axioms. In other words, the axioms for arithmetic
cannot distinguish among various models that differ in
subtle ways. No akiom system (except a very simple one)
provides a complete description of the model it is intended
to describe.

Describing the infinite

The problem, it turns out, is due to our inability to
describe precisely infinite things in a finite language. Vir-
tually every useful mathematical theory involves infinite
sets, yet all propositions, axioms and proofs must be of
finite length. This limitation on language—that each
human utterance, including each logical demonstration of
a mathematical theorem, is of finite duration—imposes a
severe limitation on the power of axiomatic systems. The
finite nature of mathematical language is the basis for
Godel’s proof, and, as we shall see, for all of Robinson’s
work concerning the infinite and the infinitesimal.

The major growth of mathematics has always taken
place in its upper branches, where new buds open into
blossoms of unexpected power and beauty. But the roots
of mathematics grow too, especially those that tap the
psychological resource of the basic idea of ‘“number.”
Number means precisely what mathematicians define it to
mean, but their definitions continually evolve to reflect
their improved understanding.

Prehistoric man began wusing numbers as a simple
counting device. Greek geometers interpreted number as
length, and were puzzled by ‘“‘incommensurable” numbers
that did not share a common measure with the ordinary
whole numbers. Mathematicians of the 17th and 18th cen-
tury wrestled with other exotic numbers and gave them
such pejorative labels as negative, imaginary, irrational,
radical. But despite inertia and misunderstanding—even
some famous 19th century mathematicians had trouble
multiplying negative numbers propertly—the meaning of
“number” gradually enlarged wuntil it reached a now-
classical plateau by the end of the 19th century.

The most important system of numbers in this classical
scheme is the system known as the “real numbers.” (They
are called real to distinguish them from the imaginary
numbers that involve the square root of —1.) The real
numbers are represented graphically by a ruled straight
line extending without bound in both directions (Figure 1).
The number 0 is at the centre, positive numbers to the
right and negative numbers to the left. The real number
line is, simultaneously, the idealisation of time, and of one-
dimensional space. It is constantly used as one dimension
in a graph, representing either space or time.

In classical analysis the real number line is constructed
by extending the intuitively self-evident properties of the
whole numbers to an enlarged domain. In 1890 Giuseppe
Peano in Turin, Italy, set forth axioms for the whole
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The straight line representation of the set of all real numbers

numbers 0, 1, 2, 3, . . . which thus fgrmed the core of the
axioms for the real numbers. In essence, Peano described
the whole numbers by the property that each number has
an immediate successor, and that each number—except the
first one, 0—has an immediate predecessor. He thought,
naively, that his axioms provided a complete and unam-
biguous description of the infinite set of whole numbers.

But he was wrong. In 1934 the Norwegian logician
Thoralf Skolem showed that there must he models other
than the one Peano intended that also satisfy his axioms.
Skolem created a model that had, in addition to the
ordinary numbers, a whole range of infinite numbers,
sometimes loosely described as ‘“theological numbers”.
These are ideal objects that exist on the other side of the
“...”. To do this, he simply postulated one infinite number
(suppose it is called ¢) and then used Peano’s axioms to
generate a whole range of predecessors and successors:
0,1,2,3,... 02, 0], 0, 0+]1, 042, .,
Skolem’s model for Peano’s axioms was the first non-
standard model in mathematics.

About 20 years ago, Abraham Robinson, while consult-
ing Skolem’s original paper, realised “in a flash” that it
might be possible to think in terms of infinite numbers
relative to the real number line the way Skolem had done
for the whole numbers. By examining his idea more care-
fully he discovered that this route would be the best way
to give a coherent and consistent theory of the discredited
infinitesimal as well.

What Robinson did, imitating Skolem, was to imagine
the existence of one single infinite number, and then let
the ordinary axioms of the real numbers draw out the con-
sequences of this idea. This infinite number (let’s call it
v again) would have to have, for instance, all sorts of
other infinite numbers around it—corresponding to what
one would get if one were to add various other (finite)
numbers to the infinite one. In addition, the model would
have to contain the reciprocal of the given infinite number
(that is, 1/w), because all real numbers (except for zero)
have reciprocals. This reciprocal of an infinite number is
an infinitesimal.

The nonstandard real line is to the standard real line
as the Universe is to our Galaxy. Instead of having just
one line, the nonstandard model turns out to have infinitely
many lines extending both to the right and to the left
beyond the “ends” of the standard real line. These new
copies of the real line are called “infinite galaxies”, and
the standard line the “finite galaxy.” This is the macro-
scopic view of the nonstandard real line; there is a micro-
scopic view as well.

If we imagine examining the ordinary real line under
a microscope of infinite power, we will, according to
classical theory, discover that the line is composed of
points. But in Robinson’s non-standard model, when the
microscope is focused on one of these points, it reveals
that the point is not just a simple point, but a tiny copy
of the ordinary real line. (This discovery is akin to the
discovery that atoms are not really indivisible, but consist
of electrons, protons, and neutrons.) This tiny copy of
the real line is called a monad (in honour of Leibnitz), and
the distances measured within a monad are infinitesimals.
The non-standard real line can therefore be visualised
geometrically as a complex structure of worlds within
worlds, with galaxies comprised of monads spread out in
infinite distances (Figure 2).

The actual construction of the non-standard model is
more a matter of language than of geometry. Although
the geometry helps people perceive the structure—as the
ordinary straight line with ruler marks on it helps people
perceive the structure of the ordinary real line—the essence
of a non-standard model lies in a careful analysis of just
what can and cannot be said in ordinary language about
mathematical models.
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The non-standard model developed by Robinson treats each
“point” on the line representing real numbers as a tiny copy of
the real line

Robinson began by listing all basic propositions about
numbers that can be stated in a simple formal language—
such as the one ordinarily used by mathematicians in their
daily work. He then added to this collection a whole list
of propositions that describe infinitesimals and infinite
numbers, and finally used a powerful theorem of mathe-
matical logic to find a model for the enlarged theory. This
theorem, known as the compactness theorem, sets forth
broad conditions—easily met in this particular instance—
under which lists of axioms must necessarily have a model.

Robinson called the standard real line R, and the non-
standard one *R. The surprising and most important fact
about *R is that it is a model for the same elementary
theory as is R: any true thing that can be said in the
elementary language about R applies also to *R. This so-
called “transfer principle” seems incredible (“double talk”
according to one of the physicists who is now applying
the theory), since in *R there are infinite numbers that are
not in R. But in the non-standard world, words such as
“finite” and “infinite” turn out to have meanings different
from those they have in ordinary mathematics. For
instance, whenever a mathematician tries to describe the
finite numbers in *R—that is, the whole numbers that are
in the finite galaxy—the language in which propositions
about *R are expressed forces him to accept as a “finite
number” a lot of numbers from the infinite galaxies as well.

The reason for this slippery state of affairs is that the
formal language in which mathematical thoughts are
expressed—that very same formal language that Robin-
son began with in his construction—is incapable of cap-
turing every nuance of the models our minds can envisage.
Whenever mathematicians begin to deal with infinite sets
—and virtually every mathematical model does because
the set of numbers itself is infinite—they run up against
the finite limitation of mnatural language: all human
utterances, including every statement and proof of mathe-
matical propositions, must be of finite length. And finite
descriptions are incapable of providing complete detail for
infinite models.

The result is that differing models may be indistinguish-
able in the vocabulary of formal mathematics. Indeed,
every formal statement about a non-standard model cor-
responds to an identical formal statement about an
ordinary model. Thus there is, in the literal sense, nothing
new in the non-standard universe: what differences there
may appear to be lie entirely in the eyes of the beholder.
This unseemly subjectivity, claim critics of non-standard
analysis, is inappropriate in mathematics. Since there can
be no formal difference between the two systems, old and
new, the non-standard models appear to some to be inadvis-
ably replacing concepts steeped in centuries of physical
intuition with ethereal abstractions rooted only in the
mathematically thin, soil of modern logic. Stanford mathe-
matician Errett Bishop, reviewing a new calculus book

using the non-standard approach, laments that non-
standard analysis will only confirm students’ “experience
of mathematics as an esoteric and meaningless exercise
in technique”.

While this criticism may be true in the literal sense, it
really applies only to one of several areas in which mathe-
matics contributes to our wunderstanding, namely to
mathematics as a system of deductions based on axioms.
But mathematics is not only a body of results; it is also
a language and a method. Whenever the language of
mathematics is simplified so as to harmonise its formal
concepts with either intuitive or physical insight, scientific
discovery is advanced.

Mathematicians who encounter non-standard models for
the first time become frustrated because they feel they
have lost control over the words they use; words no longer
mean precisely what they intend them to mean. But the
silver lining in this cloud is enormously valuable, for all
the well known facts and intuitive judgements about finite
structures apply in non-standard models to certain infinite
structures as well. Non-standard analysis thus turns a
liability into an asset by using the inability of elementary
language to distinguish properly between the finite and
the infinite as a bridge for our intuition between those two
distinctly different realms.

Precisely three centuries after Isaac Newton introduced
the calculus of infinitesimals as a tool for those seeking
to comprehend the laws of nature, Abraham Robinson re-
created a ‘“non-standard” calculus of infinitesimals as a tool
for those seeking to understand the process of mathemati-
cal reasoning. Whereas Newtonian analysis eventually
reduces the infinite to the finite, Robinson reversed this
flow by extending the finite to the infinite. Non-standard
analysis may well be the analysis of the future.
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