
Science routinely involves 
entities that are in 1, 2, 3 and 4 
dimensions. Now, there are new 
insights into well-known but 
enigmatic phenomena whose 
dimensions are other than 
whole numbers. 

BY LYNN ARTHUR STEEN 
The world of classical geometry is in- 

habited by objects of integer dimension: 
Spheres, cubes and other solids are 
three-dimensional; squares, triangles 
and other plane figures are two dimen- 
sional; lines and curves are one-dimen- 
sional, and points are zero-dimensional. 
The basic categories in which size is 
measured-volume, area, length- 
reflect this fundamental classification, as 
do virtually all theories of physics and 
physical chemistry. Even when more 
sophisticated theories (e.g., relativity, 
quantum mechanics, linear algebra, 
Hilbert space) have required more than 
three dimensions, the extension to high- 
er dimensions progresses in integer steps 
(until it becomes infinite). Dimension, if 
finite, has always been measured in in- 
tegers. 

Nevertheless, for the last hundred 
years there have been infrequent but 
reliable reports of both mathematical and 
scientific phenomena that behave as if 
they had a dimension part way between 
two whole numbers. Now these scattered 
reports have been unified into a new 
theory of fractals, objects that do not con- 
form to classical definitions of dimen- 
sion. Typically, fractals are extremely ir- 
regular curves or surfaces that wiggle 
enough to partially fill the gap between 
one dimension and the next higher one. 

One of the oldest (and still one of the 
most striking) examples of a fractal in 
geometry is the "snowflake" curve in- 

troduced by the German mathematician 
Helge von Koch in 1904. Construction of 
this curve begins with an equilateral 
triangle. The middle third of each side of 
this triangle is stretched outwards until it 
forms two sides of a smaller equilateral 
triangle; the resulting figure, stage two in 
the construction of the Koch curve, is a 
Star of David. Stage three is formed by 
stretching outward similarly the middle 
thirds of each of the 12 sides of the Star 
of David. This process is repeated ad in- 
finitum, producing as a limit the Koch 
curve. 

This curve has certain very remarkable 
properties. At each stage in its construc- 
tion, the length of the curve increases by 
four-thirds, yet the area enclosed in- 
creases by only one-third. Hence, the 
final curve has infinite length but 
encloses a finite area. The Koch curve is 
continuous yet has sharp corners almost 
everywhere. This means that, for the 
most part, it does not have tangents and, 
technically speaking, is not differenti- 
able. Because of this bizaire behavior, 
the Koch curve was termed 
"monstrous" by many of Koch's con- 
temporaries and was widely believed to 
be a mathematical pathology totally un- 
related to any possible real world 
phenomenon. 

The Koch curve does, however, bear a 
striking resemblance to the shape of a 
rugged coastline. Indeed, in comparison 
to a coastline, the Koch curve is ex- 
cessively regular: its peninsulas and bays 
occur with absolute precision. Yet both 
the Koch curve and typical coastlines 
have a fundamental property that is at 
the root of all fractal phenomena: the 
general nature of their shape-the extent 

FRACTALS: 
A World of Non integral Dimensions 

Brownian Landscape: A computer-based mountain scene based on controlled Brownian 
motion bears striking resemblance to actual scenes (especially of lunar landscapes). The 
dimension of this surface is 2?14. Similar models based on a target dimension of 2?/y prove too 
erratic when compared to reality. 

Fractal River: An intricate fractal com- 
puter model of a river and drainage divide 
system. Each has dimension roughly 1.13 

Space Filling Tree: The growth of a frac- 
tal tree provides an idealized modelfor root 
or arterial systems, or for the structure of 
the lung. The dimension of this tree is be- 
tween I and 2. 
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of bends and wiggles, not the precise 
shape or location of them-looks the 
same no matter what scale is used for 
measurement. 

If you look at a map of a rugged coast- 
line drawn at a scale of 1:100,000 and 
then again at a scale of 1:10,000 in- 
numerable sub-bays and peninsulas 
become visible; the same thing happens 
at a scale of 1:1,000 and so forth ad in- 
finitum. Analogously, but more regularly, 
changing scales by a factor of three in a 
drawing of the Koch curve reveals new 
patterns of triangular bumps that in each 
case look similar to the previous sketch. 
This feature of similar patterns revealed 
under change of scale is called self- 
similarity and is at the heart of most frac- 
tal objects. 

One consequence of self-similarity 
(for coastlines and for some other 
phenomena as well) is that length no 
longer provides an adequate measure of 
size, for if a coastline is measured with 
shorter and shorter measuring sticks, its 
length grows without bound. In fact, ev- 
ery one of a half-dozen reasonable 
definitions of the length of a coast leads 
to the conclusion that the true length is 
infinite-because the extent of wiggling 
is too great. Even though a coastline, 
being a curve, is geometrically one- 
dimensional, the method of measure- 
ment appropriate to one-dimensional ob- 
jects is ineffective. 

The problem can be resolved, accord- 
ing to mathematician Benoit Mandelbrot 
an IBM Fellow at IBM's Thomas J. Watson 
Research Center in Yorktown Heights, 
N.Y, by recognizing that the dimension 
of an object must be used as an exponent 
in measuring its size. From this point of 
view the actual dimension of a coastline 
(or of the Koch curve) is not one. If a line 
segment is divided into N similar parts, 
each part reduced from the original by a 
scale factor r, then N = l/r and the total 
length of the original segment equals 1/r 
times the length of each part. Likewise, if 
a square is divided into N similar parts, 
each reduced from the original by a scale 
factor r, then N = I/r2, so the total area 
of the original square equals /r2 times 
the area of each smaller square. In other 
words, when a geometric figure is 
rescaled, its dimension (1 for the line, 2 
for the square) must be used as an expo- 
nent in reconstituting the measure of the 
whole as the sum of the measure of its 
parts. The general formula is N = 1/rd, 
where N is the number of similar parts 
scaled by the factor r, and d is the ap- 
propriate dimension. This fact provides a 
quantitative tool for estimating dimen- 
sions of fractals. 

For example, if a segment of the Koch 
curve is divided into N = 4 parts, each 
part will be similar to the original but 
reduced by the fraction r = I/3 Hence, 
if the pattern N = 1 /rd is to hold, then d 
must equal log N/log (l/r); in this case, d 
= log 4/log 3 = 1.2618. So the fractional 
dimension of the fractal Koch curve is 
1.2618. Empirical studies by the ec- 
centric British meteorologist Lewis Fry 
Richardson show that the dimension of 

actual ocean coastline is not quite this 
large; the dimension varies from coast to 
coast, but generally runs in the range 
from 1.15 to 1.25. 

Fractals arise in many parts of the 
scientific and mathematical world. Sets 
and curves with the discordant dimen- 
sional behavior of fractals were in- 
troduced at the end of the 19th century 
by Georg Cantor and Karl Weierstrass. 
Until now their use has been limited pri- 
marily to theoretical investigations in ad- 
vanced mathematical analysis. Like the 
Koch curve, they were considered too 
bizarre for application to the real world. 

The primary scientific example of frac- 
tals has been Brownian motion: It ex- 

hibits the excessive irregularity and 
statistical self-similarity typical of fractal 
phenomena. When a Brownian path is 
examined in increasing detail, its 
length-like coastlines-increases with- 
out bound. Jean Perrin, whose work on 
Brownian motion won him the Nobel 
Prize in physics, observed the similarity 
between Brownian paths and the non- 
differentiable "monster" curves of the 
mathematicians and attributed it to the 
self-similarity phenomenon that Man- 
delbrot has now identified as the source 
of fractal behavior: "[A]ny scale," said 
Perrin, "involves details that absolutely 
prohibits the fixing of a tangent .... An 
unprejudiced observer would therefore 
conclude that he is dealing with a func- 
tion without derivatives ...." 

Mandelbrot, in a recently published 
book entitled Fractals: Form, Chance and 
Dimension (Freeman, 1977, $14.95), 
shows how these classic examples of 
fractals provide insight into a host of 
scientific observations previously lacking 
a unified theory. For example, from the 
fractal theory of coastlines, Mandelbrot 
explains the observed relation between 
the number and size of islands in an 
archipelago, as well as between the num- 
ber and size of lakes (the opposite of is- 
lands) in a continent. 

Similar analysis explains the so-called 
Zipf phenomenon in statistical 
linguistics. The statistical distribution of 
word frequencies in different languages 
is nearly universal and follows an empiri- 
cal curve that depends on a certain expo- 
nent. Mandelbrot derives the Zipf law 
from the self-similar characteristic of a 
lexicographical tree, and shows how 
dimension, in this context, is a measure 
of the richness of the vocabulary. A simi- 
lar analysis leads to the empirically based 
Pareto law for salaries. 

In 1890, Giuseppi Peano created a 
fractal "space-filling" curve. It mean- 
dered so much that it passed through ev- 
ery point in a unit square! This behavior, 
suitably modified, is a good idealization 
of the geometry of river networks and of 
the vascular network in a body: To do 
their job, rivers and veins must pass 
within a small distance of every point of 
the territory they serve. Hence, these 
networks, too, are examples of fractal 
phenomena. 

Other examples brough under the 
fractal umbrella by Mandelbrot's recent 
work include the clustering and distribu- 
tion of stellar matter, cratering of the 
moon, geometry of polymers, tur- 
bulence in fluids and the distribution of 
errors in data transmission. In each case, 
the analysis depends on the use of well- 
established mathematical curves or sur- 
faces "thus far reputed pathological." 
Fractal behavior erupts whenever self- 
similarity forces the whole to be, in cer- 
tain essential respects, the same as its 
parts. Richardson expressed this well 
when he wrote of turbulence: 

Big whorls have little whorls 
which feed on their velocity; 

And little whorls have lesser whorls, 
and so on to viscosity. 
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Koch Curve: Repeated protrusions in a 
strict repeating pattern create, ultimately, the 
Koch island whose coastline is so rugged 
that it has dimensions slightly larger than 
11J/4. Illustrations depict 1st, 2nd, 3rd and 
6th stages in the evolution of this island. 
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