
coputtoa 
Unsolvabilt 

Problems where complexity 
grows exponentially are now 

believed incapable of 
exact solution on even the 
fastest possible computers 

Problems of arrangement and schedul- 
ing are among the most common yet most 
vexing in all of applied mathematics. 
Sometimes solutions are intuitively obvi- 
ous; other times they are surprisingly 
paradoxical. Some problems succumb to 
prosaic methods of attack, while other 
apparently similar problems are totally 
intractable. 

The common managerial task of sche- 
duling a given set of jobs among available 
staff in order to finish the work in the least 
possible time is a good example. Ordinar- 
ily, if the manager sees that he can't meet 
his deadline with existing staff, he will 
add an additional person. But in some 
cases, this additional person might in- 
crease rather than decrease the total length 
of time required to finish the job. The 
subtleties of scheduling are so deep that, 
although it is possible to write a computer 
program that will determine the most 
efficient schedule for a staff of two, it 
appears that the same problem for a staff 
of three requires so much computer time 
as to be, for all practical purposes, im- 
possible to execute when the number of 
jobs is large. 

Recent research has revealed a pro- 
found dichotomy in the nature of these 
combinatorial problems. Some are, in a 
specific technical sense, easy, while others 
are hard. The latest major problem to be 
successfully diagnosed in these terms is 
over 100 years old. It begins in a tale of 
four cities and ends in current research in 
computer networks and integrated circuit 
design. 

Suppose an engineer wants to find the 
least expensive way to join cities located 
at the four corners of a square with a 
network of telephone cables. Since the 
cost of installing the network is roughly 
proportional to the total length of cable, 
he might expect that the best solution is 
to lay cable along the diagonals of the 
square, with a junction in the middle. But, 
surprisingly, this does not yield the short- 
est (and cheapest) network: the engineer 
could do about 3 percent better if he used 
two junctions and joined the cables at 
angles of 1200 (see diagram). This con- 
figuration is the optimal, or best possible, 
solution to the engineer's problem. Be- 
cause this solution was first studied by the 
19th-century German geometer Jacob 
Steiner, the junction points where three 
paths meet at equal angles are today called 
Steiner points. (The 1200 requirement for 
minimal path lengths is the two-dimen- 
sional analogue of the 1200 angles at 
which soap films meet [SN: 9/20/75, p. 
186].) 

BY LYNN ARTHUR STEEN 
Modern engineers confront varieties of 

Steiner phenomena in problems ranging 
from the design of microprocessor chips 
to nationwide communication networks: 
The determination of the shortest network 
linking certain given vertices is one of the 
famous unsolved problems of combina- 
torial mathematics known as the Steiner 
minimal tree problem. (It is called a tree 
problem because of the resemblance be- 
tween its solution network and complex 
branching of trees.) Although the nature 
of the general solution is well known, 
finding locations for the required Steiner 
points is a very difficult problem. 

Until 1961 it wasn't even known if the 
problem could, at least in principle, be 
solved by a search of all possibilities. At 
that time Z. A. Melzak invented an al- 
gorithm (a step-by-step solution proce- 
dure) that introduced possible Steiner 
points in a sufficiently systematic way that 
it would eventually find the optimal con- 
figuration. But, despite a variety of im- 
provements since then, Melzak's al- 
gorithm takes so much time that even on 
the fastest computer it is really feasible 
only for networks with about 15 to 20 
vertices. 

An experienced designer could do just 
about as well "eye-balling" the problem, 
that is, examining a scale drawing and 
introducing Steiner points where it looks 
as if they will do the most good. What 
makes the Steiner minimal tree problem 
so difficult is trying to tell a computer 
which of the many possible Steiner points 
"look good." It is precisely when the 
problem gets too large for a person to 
"'eye-ball" that the computer is most 
needed, and that is precisely where exist- 
ing programs are of no use. 

The meager results of nearly two dec- 
ades of work on the Steiner minimal tree 
problem led many researchers to speculate 
that the problem was in fact intractable. 
That it is indeed intractable has now been 
proved by Michael Garey, Ronald Gra- 
ham and David Johnson of Bell Labora- 
tories in Murray Hill, N.J. 

To understand the nature of their result 
we need to examine briefly the nature of 

computer algorithms that are used to solve 
problems of scheduling or arrangement. 
Solving such problems involves searching 
through different combinations of events 
in space or time; thus these problems are 
part of what is known as combinatorial 
analysis. All such problems have in com- 
mon a natural "tree structure" in which 
early tentative decisions by the solver lead 
to branch points in the solution process 
where several other options may be pur- 
sued. 

In a typical problem, there may be only 
a few correct routes through an enormous 
maze of branches. A combinatorial prob- 
lem is like a huge tree with fruit at the 
tips of just a few twigs. How is a near- 
sighted bug crawling up the trunk going 
to select only the branches that lead to 
the fruit? 

One way would be to have an oracle 
who can see the whole system at a glance. 
This is, in fact, how many relatively small 
combinatorial systems are solved-by a 
Gestalt-mathematician who apprehends 
the solution in a single act of perception. 
But it does not work for large systems 
because computers lack human insight, 
and humans lack the computer's memory. 

A second method would be to employ 
a so-called nondeterministic algorithm. 
"Nondeterministic" is used to describe 
methods that avoid the problem of deter- 
mining the correct branch by following all 
branches simultaneously. This requires, 
hypothetically, a computer that replicates 
itself over and over again so that late in 
the process thousands of similar programs 
will be working alongside each other, 
simultaneously pursuing different 
branches of the solution tree. Whenever 
any one finds the fruit, the problem is 
solved. 

Nondeterministic algorithms have a 
natural advantage of speed, for the time 
required for such an algorithm to solve 
a particular problem depends only on the 
total path length from beginning to end 
(called the depth of the solution tree) and 
not at all on the number of different 
branches in the tree. But they achieve this 
advantage by unrealistic simultaneous re- 
plication of computation power. Only in 
the last few years have parallel-processing 
computers been developed, and the num- 
ber of parallel tracks is strictly limited by 
the nature of the hardware. So, for all 
practical purposes, nondeterministic al- 
gorithms are a figment of a theoretical 
imagination. They cannot be used for 
practical solution of large combinatorial 
problems. 

The conventional way to simulate par- 
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Cities * connected with a network by means of Steiner points 0 are pictured by 
the solid line. An alternative Steiner network linking the same cities is marked by 
dotted lines, using the Steiner points A. Both of these Steiner networks require less 
total distance than any straight-line network that did not use Steiner points, but it 
is not immediately clear which of these two Steiner networks uses least total distance. 

Two ways to efficiently connect cities with telephone networks. For a square one mile 
on each side, the obvious method on the left requires 2,/2 = 2. 83 miles of cable. 
The more subtle means on the right, using cables that intersect with equal angles 
at two junctions, required only I + 3 = 2. 73 miles of cable. 
allel processing in a standard sequential 
computer is by means of a "backtrack" 
algorithm. Each time a branch point is 
reached, one branch is pursued and the 
others are stored in a stack of incompletely 
developed options. When the program 
reaches a dead end along the path it is 
pursuing, it backtracks to the most re- 
cently encountered unexplored branch 
stored in its options stack and pursues it. 
This process is repeated as often as nec- 
essary until one of the sequences of 
branches leads to a successful conclusion. 

Backtrack programming (and related 
techniques called "branch and bound" 
algorithms) are just systematized ap- 
proaches to trial and error: They organize 
the trials to ensure that errors, once dis- 
covered, are never repeated. But even a 
systematic search of all possibilities re- 
quires an enormous amount of time. 
Typically, the time required for a back- 

track solution grows exponentially with 
the size of the problem. 

The facts of exponential growth over- 
whelm even the astonishing speed of 
modern computers. Typical combinatorial 
problems involving, say, 10 cities (or 10 
tasks to be scheduled) may require about 
210 (roughly, 1,000) branches. Depending 
on the complexity of the investigation to 
be carried out along each branch, this can 
be done in about a second or so of com- 
puter time. But if the problem increases 
to size 50-not all uncommon-the 
branching increases to 250; at 1,000 
branches per second, this would take over 
30,000 years! Thus computer scientists 
view as intractable large problems whose 
only known solutions are achieved by 
backtrack programming. They are com- 
putationally unsolvable. 

Much better are those algorithms that 
grow polynomially rather than exponen- 

tially. If the time involved is of the order 
of n2 or n3 rather than 2 , the computation 
time for large problems is dramatically 
reduced. For example, to continue with 
the hypothetical computations of the pre- 
vious paragraph, a computer checking out 
1,000 branches a second would manage 
102 branches in a tenth of a second, and 
502 branches in 2.5 seconds. Even 503 
branches would only take two minutes. So 
to get a rough measure of the time re- 
quired to solve a problem, computer sci- 
entists look first at whether the solution 
algorithm grows polynomially or expon- 
entially with the size of the problem data. 

Exponential growth most often results 
from a solution tree that is too broad: Even 
though the number of steps in a correct 
solution may grow polynomially, if the 
number of unfruitful branches that must 
be explored is too great, the time required 
by the solution algorithm may grow ex- 
ponentially with the size of the problem. 
Problems like this can be solved in poly- 
nomial time by a nondeterministic al- 
gorithm. But, as we have seen, such al- 
gorithms are idealizations, incapable of 
actual implementation in polynomial time. 

The class of problems that can, in prin- 
ciple, be solved by a nondeterministic 
algorithm of polynomial time a class 
called NP, short for nondeterministic po- 
lynomial-thus includes many of the 
problems whose solutions actually seem 
to require exponential time. Whether in 
fact those problems that now seem to 
require exponential time actually cannot 
be done in polynomial time is not known: 
One of the major unsolved problems of 
current computer science is whether, pos- 
sibly, every problem in the class NP can 
really be solved in polynomial time by an 
ordinary (deterministic) algorithm. 

Massive circumstantial evidence has led 
virtually all informed observers to the 
conclusion that some problems in NP 
cannot be solved in polynomial time. This 
conclusion, if upheld, means that large 
problems of this type cannot be solved at 
all. 

The first step in this chain of evidence 
was taken in 1971 by Stephen Cook of 
the University of Toronto who showed 
that each problem in the class NP can be 
transformed into a certain problem in 
mathematical logic, called the Satisfiabil- 
ity Problem, in such a way that any al- 
gorithm that would solve the Satisfiability 
Problem could be adapted to solve the 
other problem as well. (The Satisfiability 
Problem is the question of whether a 
Boolean logical expression can be satis- 
fied [i.e., made true] by appropriate 
choice of the propositions from which the 
expression is built.) Cook's result shows 
that, in some sense; no problem in the 
class NP is any harder than the Satisfia- 
bility Problem. 

Shortly after Cook announced his re- 
sult, Richard Karp of the University of 
California at Berkeley showed that many 

Continued on page 301 
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.l. . Computation 
other problems in the class NP share the 
distinction of the Satisfiability Problem. 
He called these problems NP-complete; 
they are sufficiently detailed to serve as 
prototypes for all other NP problems. 
Each NP problem can be transformed into 
any NP-complete problem and solved by 
appropriate adaptation of the solution al- 
gorithm for the NP-complete problem. 

NP complete problems form a subclass 
of the class NP containing those of maxi- 
mum difficulty. Karp (and others after 
him) showed that many famous problems 
of finite mathematics are in this class. 
These include the famous "traveling 
salesman problem" (find the shortest route 
that visits each city on a list exactly once), 
"0-1 integer programming" (linear pro- 
gramming in which variable values are 
limited to yes or no options) and "graph 
coloring" (assign a limited number of 
colors to regions in such a way that no 
regions with a common frontier receive 
the same color). The recent result of 
Garey, Graham and Johnson shows that 
the Steiner minimal tree problem is also 
of this type: It is NP-complete. 

Most of the problems now known to 
be NP-complete have an extensive history 
of unsuccessful search for a polynomial- 
time algorithm. Recognition that they be- 
long to the class of NP-complete problems 
shows that they are essentially equivalent 
problems. Thus the accumulated evidence 
of unsuccessful search for efficient al- 
gorithms for each of the several dozen 
NP-complete problems concatenates into 
an impressive record of failure. 

Nearly half a century ago the mathe- 
matical logician Kurt Godel astonished the 
mathematical and philosophical world by 
showing that in any sufficiently complex 
mathematical system there will always be 
intrinsically undecidable propositions- 
statements that can, by their very nature, 
never be proved or disproved. The status 
of NP-complete problems-if present be- 
liefs are proved true-is somewhat analo- 
gous: They are problems that are 
sufficiently complex that, by their very 
nature, they cannot be solved in any prac- 
tical amount of time. G6del's work estab- 
lished the existence of problems that are 
theoretically unsolvable; NP-complete- 
ness points to the existence of problems 
that are computationally unsolvable. 

G6del's work on undecidable proposi- 
tions led logicians away from a fruitless 
task (the complete formalization of all 
mathematics) and into more promising 
terrain. Similarly, the discovery of NP- 
completeness is right now turning applied 
combinatorial mathematics from the 
search for exact algorithms to the search 
for sufficiently good approximate ones. 
With this new focus comes a whole host 
of new and interesting questions concern- 
ing the establishment of standards by 
which an algorithm can be judged when 
we know that it is in the nature of things 
that it cannot be perfect. DZ 

Using 
talatat to 
reconstruct 
a scene: 
Queen 
Nefertiti 
offering to 
the sun's 
disc. 

finding of the ruined foundation gives the 
dimensions of the walls and will enable 
a reconstruction of the temple-visually 
and on paper only. A reconstruction in 
stone will not be attempted-there are 
probably not enough talatat anyway, 
Rainey says. 

The discovery came just like in the 
movies. The Egyptian workers on the 
project were digging away near the 
famous temple of Karnak, in a place 
where the French archaeologist Henri 
Chevrier had found toppled statues of 
Ikhnaton in the 1920s. Suddenly Asmahan 
Shoukri, an Egyptian member of Red- 
ford's group, shouted that the workmen 
had found "laid stones." Redford ran 
down, and sure enough there it was: a bit 
of a wall. The workers also brought up 
100 fragments of decorated relief, one of 
which identifies the building as the temple 
Gem-Pa-Aton, one of eight that Ikhnaton 
built to the glory of Aton around the 
ancient Egyptian capital of Thebes. Red- 
ford believes that the temple was built 
around a courtyard that was 200 to 300 
yards long and that it was surrounded by 
a collonade of rectangular pillars bearing 
statues of the king. He intends to excavate 
further, following the wall around. The 
project is expected to take 10 years. 

The talatat as pieced together show fig- 
ures in procession doing religious things. 

The 100 most recently unearthed show a 
procession bearing the king to the temple 
to be received by bowing courtiers and 
priests. The direction in which the figures 
face can be used to determine which wall 
the stones belonged to. Since the ancient 
Egyptians, including Ikhnaton, built sym- 
metrically, what is learned about any one 
wall will help determine the configuration 
of its opposite. And so eventually Egyp- 
tologists hope to know exactly what kind 
of building this early monotheist con- 
structed for the public worship of his 
deity. 

Because of his innovations and radical- 
ism, Ikhnaton fascinates the modern 
imagination even more than he dismayed 
his contemporaries. Much has been writ- 
ten and speculated about him though little 
is really known. It may, in fact, be that 
his immediate successors did not quite 
succeed in obliterating his memory for 
later generations of his countrymen. It is 
several centuries from Ikhnaton's day to 
the time when Moses led the children of 
Israel through the Red Sea, yet some 
scholars would like to see an influence of 
his on the dawning Hebrew consciousness 
of monotheism and on through modern 
religion. Some purport to find resem- 
blances between some of Ikhnaton's 
hymns to the sun and the psalms of the 
Hebrews. O 
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