Foundations of Mathematics: Unsolvable Problems

Mathematicians have known since 1931
that some exotic mathematical problems
must necessarily be unsolvable, but only
within the last decade did they begin to dis-
cover examples of such problems in many
parts of mathematics. Now hundreds of
such problems have been proved to be un-
solvable. Recently two rather famous prob-
lems—one proposed by the German math-
ematician David Hilbert in 1900 and the
other proposed by the Russian mathe-
matician Mikhail Souslin in 1920—have
been added to the growing list.

Actually, there are two distinct types of
“‘unsolvability” in mathematics. One kind,
illustrated by the 19th-century result that
the classical Greek problem of trisecting
an angle is unsolvable, is really an instance
of “impossibility.” The other type, of far
greater scientific and philosophic import, is
really a judgment of “‘undecidability”: the
discovery of non-Euclidean geometry
showed, for example, that Euclid’s fifth
(parallel) postulate could not be decided—
that is, proved or refuted—on the basis of

model with certain predetermined proper-
ties. The method has been applied exten-
sively during the past decade to construct
mathematical models with all sorts of ex-
otic properties and, in the process, estab-
lish the undecidability of a host of mathe-
matical propositions, some obscure and
some rather famous. Each undecidability
proof requires construction of a model in
which the proposition in question is true
and of another one in which it is false: the
undecidability of the proposition follows
from the existence of such modeis, for no
general proof or refutation will be possible
if the proposition is, in fact, true in some
models while false in others.

A few years ago, Thomas Jech of the
State University of New York, Buffalo,
and Stanley Tennenbaum of the University
of Rochester found—by modifying Co-
hen’s method—a model in which Souslin’s
conjecture is false. Souslin’s conjecture,
like Cantor’s, had something to do with the
size of the real number line. What Souslin
proposed was a simple characterization of
the real number line—a specific axiomatic
description that would logically entail all
properties of the real number line.

Souslin knew that the ordinary proper-
ties of the real numbers—their arrange-
ment in a linear order without any gaps,
for instance—are not adequate to unam-
biguously characterize them because there
are mathematical structures that have all
of the ordinary properties but are quite dif-
ferent from the real numbers. One such
structure is called the long line because it
looks just like the ordinary real line but is
much longer: it contains the ordinary real
line as a tiny subset. Souslin conjectured
that the real line is, in a certain sense, the
smallest object that satisfies all the ordi-
nary, arithmetical properties of numbers.

The model of Jech and Tennenbaum did
not disprove Souslin’s conjecture, for to do
that one would have to demonstrate that
the conjecture is false in every possible
model. Jech and Tennenbaum only found
one model in which it was false. But then
Ronald B. Jensen of the University of Cali-
fornia, Berkeley, using still another varia-
tion on Cohen’s method, found a specific

the other accepted axioms of plane geome-
try.

The possibility—indeed, the certainty—
that some mathematical problems may ac-
tually be undecidable was first discovered
by the logician Kurt Godel, now at the In-
stitute for Advanced Study in Princeton.
He showed in 1931 that all axiomatic sys-
tems (except very simple ones) must con-
tain assertions that can be neither proved
nor refuted by logical deduction from the
given axioms. This means that all of the fa-
mous unsolved problems of mathemat-
ics—the four color problem, Goldbach’s
conjecture, Fermat’s last theorem, and so
on—became candidates for the purgatory
of perpetual undecidability, and that math-
ematicians will have to determine whether
they are undecidable or merely very hard
to solve.

The first major breakthrough in the
search for specific undecidable proposi-
tions came in 1963. In that year Paul Co-
hen of Stanford University, extending
work begun by Godel in 1939, established

model in which Souslin’s conjecture is true.
The existence of these two models with op-
posite features ensures that Souslin’s con-
jecture is actually undecidable.

Like Euclid’s fifth postulate, Cantor’s
and Souslin’s hypotheses are not decidable
from the other conventional axioms. When
mathematicians say that they are unsolv-
able, they mean simply that the axiomatic
structure of mathematics is not sufficiently
powerful to decide whether they are true or
false.

But unlike their equivocation over Eu-
clid’s fifth postulate, mathematicians’ in-
ability to resolve Cantor’s and Souslin’s
conjectures is not due merely to their refus-
al to write down sufficiently many axioms.
Cantor and Souslin were attempting to de-
scribe properties of a large infinite set (the
real numbers); the undecidability of these
properties is a reflection of the hazards of
employing a logical leap of faith to extend
our knowledge of finite sets to infinite ones.

In contrast, the problem proposed by
Hilbert—specifically, the tenth on the list
of 23 problems which he set forth in 1900
as challenges for 20th-century mathemat-
ics—is unsolvable in the sense that no ob-
jects of the sort required by this problem
can ever exist, in theory or in practice. Hil-
bert asked in his tenth problem for an al-
gorithm (a list of instructions for solving a
problem) that could decide for any polyno-
mial equation whether or not it had any in-
teger solutions. In 1970 the young Russian
mathematician Yuri Matiyasevich of the
University of Leningrad proved that no
such algorithm can exist.

Matiyasevich’s proof is totally unlike
Cohen’s forcing methods, and the nature
of his conclusion is likewise quite different.
Matiyasevich succeeded, by means of a
complex Diophantine equation (one whose
solutions are required to be integers), to re-
duce Hilbert’s tenth problem to a classical
argument concerning the nature of algo-
rithmic processes: there is no general
method which can be used to determine
whether a proposed algorithm will neces-
sarily halt—that is, yield an answer. This
result, popularly called the halting prob-
lem, depends on reasoning analogous to

the undecidability of a conjecture due to
the 19th-century mathematician Georg
Cantor concerning the relative sizes of sub-
sets of the real number line. Cantor was
trying to formulate a concept (now called
cardinal number) that would permit com-
parative judgments about the sizes of in-
finite sets. He conjectured that every subset
of the real numbers must have the same
size either as the set of all integers or as the
much larger set of all real numbers.
Cantor’s so-called continuum hypothe-
sis took nearly two-thirds of a century to
resolve, and then Cohen found that the res-
olution was neither a proof of the con-
jecture nor a counterexample to it. It was,
rather, a revolutionary analysis of the limi-
tations of logical reasoning leading to the
conclusion that Cantor’s conjecture can be
neither proved nor disproved on the basis
of the accepted axioms of set theory.
Cohen’s method of proof, the basis for
most undecidability results, is a delicate
chain of reasoning in which one very care-
fully forces into existence a mathematical

that used by Godel in his proof that ax-
iomatic systems must have undecidable
propositions.

All these results—Gaodel’s undecidability
theorem, the halting problem, and Mati-
yasevich’s answer to Hilbert’s tenth prob-
lem—employ a ‘diagonalization” tech-
nique first introduced by Cantor to prove
that the set of real numbers was too large
to be ennumerated even in a potentially
infinite list. Bold variations on this single
theme produce a family of related im-
possibility results: we cannot decide all
propositions, we cannot decide whether a
computer program will necessarily pro-
duce ‘an output, and we cannot determine
whether polynomial equations necessarily
have integer solutions.

Classical mathematics had its share of
impossibility results too: we cannot trisect
an angle by Euclidean means, we cannot
find a formula to solve exactly all polyno-
mial equations of degree greater than five,
we cannot square a circle. The new results
are analogous to these old ones, but far
more general. Instead of saying that some
one problem cannot be solved, they are
saying that whole classes of problems can-
not be solved. They are, in a very funda-
mental sense, a statement of certain limits
on man’s intellectual ability.

Hilbert concluded the address in which
he set forth his 23 problems with the affir-
mation: ““We hear in us the perpetual call:
There is the problem. You can find it by
pure reason, for in mathematics there can
be no ignorabimus.” Centuries before Hil-
bert, juries often returned the verdict of ig-
norabimus (we will not know) when they
found the evidence insufficient for a ver-
dict. When faced with undecidable propo-
sitions, the jury of contemporary mathe-
maticians has also begun to render the ig-
norabimus verdict. Undecidability is no
longer a curiosity but a central fact of
mathematical research.
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