
A two-century-old problem-the geometric 
structure of soap bubble clusters-has now been 

BY LYNN ARTHUR STEEN explained by mathematicians. The solution has BY LYN ARTHU STEEN applications in many fields. 
For over two centuries mathematicians 

and physicists have struggled in vain to 
explain the geometric structure of soap 
bubble clusters. Their interest is not just 
playful curiosity, for the surface tension 
forces that determine the shape of soap 
bubbles also affect such diverse natural 
processes as capillarity, cell growth and 
annealing of metals. 

The search for understanding led inves- 
tigators to create and explore whole new 
areas of mathematics, but it never pro- 
duced a coherent theory that really did 
explain what makes soap bubbles behave 
as they do. But now new insights from 
the mathematical speciality of "geometric 
measure theory" have made possible a 
complete solution to this outstanding 
problem. 

The basic difficulty is that no one knew 
how properly to define the concept of a 
surface. Simple smooth surfaces posed no 
problem: The functions studied in ordi- 
nary calculus are quite capable of offering 
complete descriptions of such things as 
planes (the idealized surface of a table), 
spheres (the idealized surface of a ball) 
and similar surfaces with more irregular 
undulations. But functions offer at most 
very awkward and inadequate descriptions 
of more complex surfaces-common 
among soap films-that have what mathe- 
maticians call singularities, that is, edges 
and vertices caused by self-intersection or 
branching of the surface. 

Surface tension phenomena are gov- 
erned by a physical principle requiring 
minimization of surface energy. Since 
surface energy is proportional to surface 
area, mathematicians, in addition to 
figuring out how best to describe surfaces, 
must also determine appropriate means of 
measuring their areas. Once this is done, 
they must then seek a method for finding 
those surfaces that have least area, thereby 
minimizing surface energy requirements. 

Traditionally, the task of defining a 
surface has been in the province of geom- 
etry, while the study of ways to measure 
area is part of measure theory-an abstract 
version of ordinary calculus. The study of 
the required minimization techniques is 
part of the calculus of variations-a sub- 
ject with a rich history going way back 
to the 18th century. The solution to the 
soap bubble problem required a new syn- 
thesis of geometry, measure theory and 
the calculus of variations, one which has 
been achieved only within recent years. 

Although several first-class mathe- 
maticians such as Newton, Lagrange, 
Gauss and Poisson worked on theories of 
surface energy, the soap bubble problem 
is widely known as Plateau's problem 
because the first major experimental study 
of soap film was done by the Belgian 
physicist J.A.F. Plateau in 1873. Plateau 
discovered that when soap bubbles meet, 
they can do so only at angles of 120 
degrees; moreover, the singular set of the 
soap bubble surface (the place where 
various surfaces intersect) consists of 
smooth curves along which three sheets 
of the soap film come together, and points 
at which four curves meet bringing to- 
gether six sheets of the surface. 

Only by assuming in advance certain 
special conditions on the possible shape 
of the soap bubbles were mathematicians 
able to explain Plateau's observation. 
Perhaps the most famous such result was 
that of Jesse Douglas in 1931: His 60-page 
"6solution" to the problem of Plateau- 
based on the assumption that the soap 
surfaces are simple enough to be described 
by functions-was so impressive that in 
1936 he was awarded the first Fields 
medal for this achievement. (The Fields 
medals, awarded once every four years by 
the International Congress of Mathe- 
maticians, are the mathematical equiva- 
lent of the Nobel prize.) 

Unfortunately, soap films do not always 
conform to the assumptions of smoothness 
and symmetry Douglas needed for his 
proof. To show theoretically that soap 
film must fit Plateau's observed structure, 
it is neither fair nor logical to rule out 
in advance those subtle cases that make 
the analysis difficult. A general proof of 
Plateau's observation would require a full 
analysis of all possible surfaces, without 
any extraneous, limiting hypotheses. This 
general proof was achieved very recently 
by Jean Taylor of Rutgers University. 

Her work is based on results of Fred- 
erick J. Almgren Jr. of Princeton Uni- 
versity who showed (first in 1967, then 
in greater generality this year) how it is 
possible to derive appropriate minimal 
surfaces from a theory in which surfaces 
are not limited to those definable by the 
functions of ordinary calculus. Almgren's 
methods-reported by him at last month's 
meeting of the Mathematical Association 
of America in Kalamazoo, Mich.-in- 
volve a subtle redefinition of surface that 
is tailor-made to fit the subsequent task 
of measuring its area. 

"Measure," in common use, is a verb 
denoting the act of determining an object's 
size. Mathematicians use it also as a noun 
somewhat in the sense of "a one cup 
measure." A measure, in the mathe- 
matician's jargon, is a certain type of 
mathematical object that measures other 
objects such as sets or surfaces. A meas- 
ure is like a specialized computer which, 
given a set or a surface as input, will 
promptly print out its length, area or vol- 
ume-whichever is appropriate. 

The key idea that makes the Taylor- 
Almgren results possible is that surfaces 
are not merely objects being measured, 
but are actually measures themselves. 
This paradoxical but immensely fruitful 
observation, first formulated about 1960 
by Herbert Federer and Wendell H. 
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Fleming, of Brown University, is revolu- 
tionizing the techniques by which mathe- 
maticians study properties of surfaces. For 
when surfaces are considered as measures, 
it is possible to find ones with properties 
that just were not possible under the limi- 
tations of the older theories. 

In saying that a surface is really a 
measure (in disguise), mathematicians are 
saying only that a surface is an object 
capable of measuring other things. To see 
how it can do this, consider a hollow gold 
sphere sitting inside an otherwise empty 
box. We want to measure, not the size, 
but the value of various chunks of the box. 
To do this, we need only figure out how 
much area on the sphere is contained in 
the chunk we are examining, for since the 
air in the chunk isn't worth anything, all 
the value of the chunk is concentrated on 
that part of the gold surface it contains. 
In this way, the spherical surface provides 
a means of measuring (the value of) 
various subsets (chunks) of the box. So 
it is no misnomer to call it a measure. 

The importance of using measure as the 
definition of a surface is that it allows 
more general, more wild, more interesting 
surfaces than do any of the former 
theories. (In particular, it allows all pos- 
sible types of soap films.) But by admit- 
ting into discourse all sorts of pathological 
surfaces, it runs the risk of producing 
existence results that may be physically 
unrealizable. After all, one of the ob- 
served properties of soap films is that the 
sheets that comprise the bubble complex 
are very smooth. Almgren's principal dis- 
covery is that the results obtained by the 
surface-as-measure theory are, nearly 
everywhere, nice smooth surfaces just like 
those treated in the classical theory. But 
unlike Douglas, Almgren does not have 
to assume that his results will be smooth: 
he proves that they must be. 

The techniques of proof are, in outline, 
rather simple, but the details are horren- 
dous. To find the shape of a minimal 
surface such as a soap bubble cluster, 
Almgren and Taylor follow the Federer- 

Fleming pattern of finding a sequence of 
measures that converge to the least possi- 
ble measure. Then they recover the sur- 
face from this minimum measure by a 
very simple device: To locate the surface, 
sample small chunks of space with the 
newly found minimal measure. Whenever 
the measure reports an answer of zero, 
you know there is no part of the surface 
in that chunk of space; whenever it is 
non-zero, you learn where part of the 
surface is. The minimum measure serves 
as a type of geiger counter to detect the 
presence of the surface. 

The final step-the one just recently 
attained-is to show that the surface re- 
covered from this minimal measure is 
sufficiently smooth and well-behaved to 
represent actual soap film surfaces. Math- 
ematicians call this part of the problem 
the regularity proof, and the former part 
the existence proof. Quite a number of 
mathematicians have worked on aspects 
of the regularity proof, including 1974 
Fields medalist Enrico Bombieri of Pisa. 

This new approach to problems of min- 
imizing surface energy has already borne 
surprising fruit in various applications to 
surface phenomena. Crystal growth, for 
instance, is determined by minimization 
of a weighted average over its surface of 
the energy required to hold the crystal 
together. Accordingly, crystal growth is 
modeled well by the surface-as-measure 
theory. In fact, Almgren has used it to 
show that in certain situations (example: 
a sodium chloride cube with one edge cut 
off) the crystal surface cannot be deter- 
mined by the surface energy because the 
resulting equations have no solution. In 
this case-one that had been studied ex- 
perimentally long before the theory arose 
to explain the phenomenon-second-order 
effects take over and make possible certain 
unusual and useful results. 

Another phenomenon that is covered by 
this same theory is the annealing of 
metals. As the metal cools slowly near its 
freezing point, crystal "grains" begin to 
grow. When the grains meet, their crystal 

structures usually do not mesh properly, 
so boundary surfaces form-producing an 
effect somewhat like a froth of soap bub- 
bles. During further slow cooling, these 
boundaries migrate in a fashion that opti- 
mizes the rate at which the crystal surface 
energy-is diminished. The crystal config- 
uration thus changes in a very complex 
fashion, with some grains vanishing, 
some merging with others. Almgren's 
student Kenneth Brakke, in a Princeton 
thesis submitted just last month, suc- 
ceeded in using the surface-as-measure 
theory to analyze this annealing process 
and to correct some major mistakes in the 
existing literature on the subject. 

Thirty years ago the French mathe- 
matician Laurent Schwartz revolutionized 
the theory of differential equations by in- 
troducing "generalized functions" that 
provide solutions for differential equations 
that just didn't exist under the constraints 
of classical analysis. The general structure 
of Schwartz's theory of generalized func- 
tions is very closely analogous to the 

"'generalized surface" theory of surface- 
as-measure. In fact, the way Schwartz 
generalized the classical notion of func- 
tion was to establish a theory in which 
functions are viewed as measures. 

In the thirty years since its creation, the 
Schwartz theory has been simplified and 
added to the basic tool kit of the working 
applied mathematician. Especially since 
the new theory of surfaces is so like the 
theory of generalized functions, those 
working in the field have every reason to 
believe that it will quickly be translated 
from an esoteric new theory to a routine 
yet powerful method of analyzing and 
even computing results in the theory of 
surfaces. D 

Example of complex. self-initersectinig suirfaces that forced 
mathematicianis to revise their earlier definitionis of surface. 

Skeletons of Radiolaria, a microscopic form of sea life sur- 
rolnded b' a froth of cells, resemble soap bubble patterns. 

Lynn Arthur Steen is professor of mathe- 
matics at Saint Olaf College, Northfield, 
Minn. He has recently become associated 
with SCIENCE NEWS as a contributing 
editor, and in that capacity will be writing 
occasional articles on new developments 
in mathematics. 
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