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In my first talk I outlined general issues surrounding quantitative literacy—what it is, why it is 
important, and how it may be helpful in addressing some of the pressing problems in 
mathematics education.  In this talk I would like to look more specifically at how quantitative 
literacy fits into the secondary school curriculum—specifically, at how it compares with 
mathematics on the one hand and with statistics on the other hand.  Thus the triumvirate of my 
title:  mathematics, numeracy, and statistics. 
It is a lucky accident of the alphabet that numeracy fits between mathematics and statistics, since 
that is also how it fits in the curriculum.  (So too does quantitative literacy, for that matter, a term 
that I use interchangeably with numeracy.)  Much of numeracy is about mathematics, about 
relations embedded in real contexts, about mental estimation and logical thinking, about 
modeling and solving problems.  But much of it is also about statistics, about seeking patterns in 
data and drawing appropriate inferences, about understanding randomness and estimating risks.  
Numeracy is not, however, the intersection of mathematics and statistics; neither is it their union.  
It is something different that sits halfway in between, sharing aspects of both but contributing 
elements that are distinctively its own. 
 
What Are We Talking About? 
A century ago, most students needed only a few years of education.  At that time, secondary 
education was advanced education.  But in recent decades, secondary schools have become the 
transition from elementary school to college.  In particular, high school courses in algebra, 
geometry, trigonometry, analytic geometry, and calculus now offer a well paved and heavily 
traveled highway that leads increasing numbers of students directly from arithmetic to higher 
mathematics. 
However, at the same time as secondary schools took on this pre-college mission, mathematics 
itself was expanding into a collection of mathematical sciences that now includes, in addition to 
traditional pure and applied mathematics, subjects such as statistics, financial mathematics, 
theoretical computer science, operations research (the science of optimization), and more 
recently financial mathematics and bioinformatics.  (It is a little appreciated fact that most of the 
advances—and fortunes—being made in genetics, investment banking, and technology all derive 
from clever applications of sophisticated mathematics.)  Although these mathematical sciences 
share with mathematics many foundational tools, each has its own distinctive character, 
methodologies, standards, and accomplishments. 
Of these several mathematical sciences, the one that ordinary individuals most often encounter is 
statistics, originally meaning the science of the state.  Created in the Napoleonic era when central 
governments began using data about population, trade, and taxes to assert control over distant 
territory, the value of systematic interpretation of data quickly spread to agriculture, medicine, 
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economics, and politics.  No longer just the science of the state, statistics now underlies not only 
economic reports and censuses, but also every clinical trial and opinion survey in modern 
society. 
Yet school mathematics courses are still as they were before the era of statistics.  They serve 
primarily to prepare students for traditional calculus-based college courses in mathematics, 
science, and engineering.  High school mathematics devotes relatively little emphasis to topics 
designed to build a numbers-based bridge from the arithmetic of the elementary grades to the 
subtle and fascinating world of data and statistics.   
Recognizing this neglect, about ten years ago the American Statistical Association (ASA) and 
the National Council of Teachers of Mathematics (NCTM) created a joint campaign in the 
United States designed to infuse more exploratory data analysis and elementary statistics into 
school curricula.  Interestingly, they called this effort not "statistics" but "quantitative literacy" to 
avoid the negative public image that required college statistics courses had created in the minds 
of many graduates, notably educators. 
Meanwhile, NCTM adopted the term "data analysis" to refer to the elementary parts of statistics 
that are included in its standards for school mathematics.  So for example, whereas in a college 
setting one might expect to see the phrase "statistics and probability," in NCTM documents one 
generally encounters "data analysis and probability."  
Thus four different terms in widespread use—quantitative literacy, statistics, numeracy, and data 
analysis—appear to have overlapping (and therefore uncertain) meanings.  To add to the 
confusion, many mathematicians distinguish between the term "quantitative literacy" and 
"mathematical literacy." They reserve the former for broad goals for all citizens, the latter for 
specific skills needed by students who will use the tools of traditional mathematics in their future 
careers or further study.  Mathematicians are inclined to think that mathematical literacy is what 
they teach, and that everything else that makes up quantitative literacy are other teachers' 
responsibilities. 
Notwithstanding the lack of agreement on the precise meaning of either term, I use "numeracy" 
and "quantitative literacy" interchangeably, not wishing to get caught up in a definitional 
discussion that can best be described as arbitrary.  However, I do generally distinguish between 
mathematics and statistics—since they are, after all, very different subjects—and between either 
of them and the subject of this talk:  numeracy.  My goal today is to help clarify the distinction 
between numeracy and the better-known disciplines of mathematics and statistics. 
 
Taking Data Seriously 
I begin with a statement of utmost simplicity.  As physics can be described as the science of 
energy and biology as the science of life, so mathematics can be thought of as the science of 
patterns and statistics-in its modern form-as the science of data.  This fundamental observation 
provides a very useful perspective from which to think about the relative merits of mathematics, 
numeracy, and statistics. 
Despite its occasional use as a euphemism for statistics in school curricula, quantitative literacy 
(numeracy) is not the same as statistics.  Neither is it the same as mathematics, nor is it (as some 
fear) watered-down mathematics.  In fact, quantitative literacy is not really a science at all;  it is 
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more a habit of mind, an approach to problems that employs and enhances both statistics (the 
science of data) and mathematics (the science of patterns).   
Mathematics teachers often resist emphasizing data since the subject they are trying to teach is 
about Platonic ideals—numbers and functions, circles and triangles, sets and relationships—not 
messy, unpredictable real-world data.   Recognizing this difference helps explain why 
mathematicians are wont to distinguish between "mathematical literacy" and quantitative 
literacy": this kind of distinction helps fence off mathematics proper from incursions by the 
purveyors of data. 
However, employers and members of the public are often frustrated by this "elitist" stance of 
mathematicians since school graduates so often seem inexperienced in dealing with real data.  
After all, the real world presents itself more often in terms of data than in the Platonic 
idealizations of mathematics.   Moreover, statisticians wince whenever mathematicians deign to 
teach statistics since mathematicians rarely honor the data for what they are, but usually try to 
force them as quickly as possible into a predetermined (Platonic) distribution from which general 
conclusions can more readily be drawn. 
As statistics differs from mathematics, so numeracy differs from both mathematics and statistics.  
Unlike statistics which is primarily about uncertainty, numeracy is often about the logic of 
certainty, especially deductions and calculations.  Yet unlike mathematics which is primarily 
about a platonic realm of abstract structures, numeracy is often anchored in data derived from 
and attached to the empirical world.  Surprisingly to some, this inextricable link to reality makes 
quantitative reasoning every bit as challenging and rigorous as mathematical reasoning.  (Indeed, 
evidence from the Advanced Placement exams in the United States suggests that students of 
comparable ability find data-based statistical reasoning more much difficult than symbol-based 
mathematical reasoning.) 
Taking data seriously has implications not only for topics such as number, measurement, and 
statistics, but also for the bedrock of high school mathematics:  the study of functions.  For 
example, despite the complexity of its algebraic formula, the normal distribution is as ubiquitous 
as linear and exponential functions. As citizens, it is very helpful to understand that repeated 
measurements (of the same thing) as well as multiple measurements (of different although 
similar things) tend to follow the normal distribution.  Knowing why some distributions (e.g., 
salaries, size of cities) do not follow this pattern is equally important, as is understanding 
something about the small size of the tails of the normal distribution (which can be very helpful 
in thinking about risks). Employers would far rather that students understand the significance of 
three- and four-sigma variations from the mean than that they can calculate accurately the impact 
of a projectile launched at a 45 degree angle—even though the latter is far more likely than the 
former to be found in a school mathematics course.  
It is interesting to ponder for a moment why quadratic and periodic functions are studied 
extensively in school whereas the Gaussian normal distribution is all but ignored in high school 
mathematics.  One reason is the historically close affiliation of mathematics with physics:  the 
functions most prominent in school mathematics are those most used to model common physical 
phenomena (gravity, motion).  A second reason is that the mathematical characteristics (area, 
slope) of these functions can be calculated in terms of elementary functions, generally of the 
same family.  And a third is the association of the normal distribution with statistics, a topic that, 
as we have seen, mathematicians have tended to shun. 
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In a numeracy-centered curriculum, however, students would learn early and often, and in many 
different contexts, the features and significance of the more common and powerful parts of 
mathematics such as the normal distribution.  Despite what mathematicians implicitly assume 
(and sometimes explicitly argue), it is preposterous to expect students to wait to learn things until 
they know enough to learn them rigorously.  If we followed that guideline for science, none of us 
would know anything at all about DNA or black holes—since none of us knows these things 
rigorously.  The content and order of the curriculum should be dictated first and foremost by the 
value of topics for students' lives.   
 
Illustrations of Numeracy 
With utility rather than tradition as a guide, I offer a rather lengthy list of useful aspects of 
numeracy that are widely expected of high school graduates, aspects that teachers rarely teach 
and that colleges rarely emphasize in the courses they offer to prospective teachers.  All these 
topics are legitimate parts of quantitative literacy—important skills that would enhance any 
person's life and work, skills rich in mathematics and statistics but neglected by traditional 
mathematics curricula: 
 
About numbers and measurement: 

• Measurement.  Direct and indirect measurement.  Use of appropriate instruments (rulers, 
tapes, micrometers, pacing, electronic gauges, plumb lines). Squaring corners and 
constructions.  Estimating tolerances; detecting and correcting misalignments. 

• Calculation. Strategies for checking reasonableness and accuracy.  Significant digits; 
interval arithmetic;  errors and tolerances.  Spreadsheet methods for handling problems 
with lots of data. 

• Mental Estimation.  Estimating orders of magnitude.  Quick approximations of total 
costs, distances, times.  Proportional reasoning.  Mental checking of calculator and 
computer results. 

• Numbers. Scientific notation;  units and conversions.  Intuitive comprehension of extreme 
numbers (lottery chances, astronomical distance).  Decimal, binary, octal, and hex 
coding; ASCII code; check digits. 

• Index Numbers.  Creation of stock market averages; consumer price index; gross national 
product; unemployment rates.  Definitions and deficiencies;  uses and abuses. 

 
About space and geometry: 

• Dimensions.  Geometric dimension (linear, square, and cubic) vs. coordinate dimensions 
in multivariable phenomena.  Proper vs. improper analogies.  Discrete vs. continuous 
dimensions. 

• Dimensional Scaling.  Relation of linear, area, and volume measures under proportional 
scaling; fractal dimensions. 

• Spatial Geometry.  Shapes in space; interpreting construction diagrams.  Calculating 
angles in three-dimensions (e.g., meeting of roof trusses); building three-dimensional 
objects and drawing two-dimensional diagrams.  
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• Global Positioning:  Map projections, latitude and longitude, global positioning systems 
(GPS); local, regional, and global coordinate systems. 

 
About data and risk: 

• Financial Mathematics. Loans, annuities, insurance.  Personal finance;  nonlinear impact 
of changes in interest rates.  Investment instruments (stocks, mortgages, bonds). 

• Data Analysis.  Visual displays of data (pie charts, scatter plots, bar graphs, box and 
whisker charts).  Quality control charts.  Recognizing and dealing with outliers.   

• Risk Analysis.  Estimates of common risks (e.g., accidents, diseases, causes of death, 
lotteries).  Confounding factors. Communicating and interpreting risk. 

• Probability.  Chance and randomness; hot streaks; bias paradoxes. 
 

About planning and modeling: 
• Planning.  Allocating resources; preparing budgets; determining fair division; negotiating 

differences; scheduling processes, decision trees; systems thinking. 
• Growth and Variation.  Linear, exponential, quadratic, harmonic, and normal curve 

patterns.  Examples of situations that fit these patterns (bacterial growth, length of day) 
and of those that do not (e.g., height vs. weight; income distribution).  

• Mathematical Modeling.  Abstracting from real-world situations; reasoning within 
mathematical models; testing results for suitability and accuracy; revision and repetition 
of modeling cycle. 

• Information Systems.  Collecting and organizing data;  geographic information systems 
(GIS) and management information systems (MIS);  visual representation of data. 

• Scientific Modeling. Common mathematical models such as acceleration, astronomical 
geometry, electrical current, genetic coding, harmonic motion, heredity, stoichiometry. 

• Technological Tools.  Facility with scientific and graphing calculators, spreadsheets, 
statistical packages, presentation software, and Internet resources. Experience converting 
data from one form and system to another. 

 
About reasoning and inference: 

• Statistical Inference.  Rationale for random samples; double blind experiments; surveys 
and polls; confidence intervals.  Causality vs. correlation. 

• Scientific Inference.  Gathering data; detecting patterns, making conjectures; testing 
conjectures; drawing inferences.  Verifying vs. falsifying theories. 

• Verification.  Levels of convincing argument.  Legal reasoning ("beyond reasonable 
doubt" vs. "preponderance of evidence").  Informal inference (suspicion, experience, 
likelihood).  Logical deduction; 

• Mathematical Inference.  Assumptions, conclusions, and counterexamples.  Axiomatic 
systems; logical deduction; theorems and proofs.  Mathematical "induction." 
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Making Mathematics Meaningful 
Connecting mathematics to authentic contexts is one way to make mathematics meaningful, but 
it demands delicate balance.  On the one hand, contextual details camouflage broad patterns that 
are the essence of mathematics; on the other hand, these same details offer associations that are 
critically important for many students' long-term learning.  Few can doubt that the tradition of 
decontextualized mathematics instruction has failed many students who leave high school with 
neither the numeracy skills nor quantitative confidence required for today's society.  This 
tradition of using mathematics as a filter for future academic performance is reinforced by 
increasing pressure for admission to colleges and universities.  These pressures skew school 
curricula in directions that are difficult to justify since they leave many students functionally 
innumerate. 
Whereas the mathematics curriculum has historically focused on school-based knowledge, 
quantitative literacy involves mathematics acting in the world.  Typical numeracy challenges 
involve real data and uncertain procedures, but require primarily elementary mathematics.  In 
contrast, typical school mathematics problems involve simplified numbers and straightforward 
procedures, but require sophisticated abstract concepts.   Effective quantitative instruction requires 
a good supply of mathematically rich tasks that are authentic, intricate, interesting, and powerful: 
Authentic: 

• Portray common contexts and honest problems. 
• Employ realistic data, often incomplete or inconsistent. 
• Meet expectations of employers and other users of mathematics. 
• Use realistic input and output;  avoid artificial worksheets. 
• Reflect the integrity of both mathematics and the domain of application. 

Intricate: 
• Expect students to identify the right questions to ask. 
• Require more than substitution into formulas. 
• Employ multi-step procedures. 
• Stimulate thinking that is cognitively complex. 
• Confront students with incomplete (or inconsistent) information. 
• Demonstrate the value of teamwork. 

Interesting: 
• Offer multiple means of approach. 
• Touch on areas of interest to students. 
• Appeal to a large number of students. 
• Invite many variations and extensions. 
• Provide horizontal linkages to diverse areas of life and work. 

Powerful: 
•  Connect graphical, numerical, symbolic, verbal, and technological approaches. 
• Offer vertical integration from elementary ideas to advanced topics. 
• Propel students to more advanced mathematics. 
• Expand students' views of mathematics and its potential. 
• Demonstrate the value of mathematics to the modern high performance workplace.  
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Educators know all too well the common phenomenon of compartmentalization, where skills or 
ideas learned in one class are totally forgotten when they arise in a different context.  This is an 
especially acute problem for school mathematics where the disconnect from meaningful contexts 
creates in many students a stunning absence of common number sense. To be useful for the 
student, numeracy needs to be learned and used in multiple contexts—in history and geography, 
in economics and biology, in agriculture and culinary arts.  Numeracy is not just one among 
many subjects but an integral part of all subjects. 
 
Who Owns School Mathematics? 
These ideas, if placed on the table alongside your own secondary school curriculum, or the 
traditional U.S. curriculum (elementary algebra, geometry, intermediate algebra, trigonometry, 
analytic geometry, pre-calculus, calculus), or the new NCTM standards (number and operations, 
algebra, geometry, measurement, data analysis and probability, problem solving, reasoning and 
proof, communication, connections, and representation) raise a central question of importance to 
us all: just who really owns school mathematics?  Who gets to decide what students should be 
taught, how they should be taught, and what they should be expected to know and be able to do?  
Do mathematicians or mathematics teachers have any greater standing in this decision than 
parents or taxpayers or school administrators?  In many countries, my own included, this is a 
very contentious issue, pitting governments against educators and scientists against teachers. 
Although I can really speak only about what I see and hear in the United States, I suspect you 
will recognize many of these arguments from your own experience.  Reformers typically want 
school graduates who can solve problems, communicate mathematically, reason mathematically 
and appreciate the value of mathematics.  In contrast, parents want their children to learn basic 
skills, especially the same mathematics with the same procedures that they studied when they 
were in school.  In addition, parents want their children to learn whatever is needed to get good 
scores on standardized school and college admission tests. 
Politicians generally want school graduates to know and be able to use basic skills, especially 
those that are essential for work or further education.  They also would like students to do well 
on comparative international tests, and they pay lip service to wanting citizens who can 
understand quantitative aspects of public policy issues.  (This cuts two ways, however, since 
informed citizens can more readily see through the gloss that is typical of politicians' prose.) 
Employers tend to be more practical-minded.  They want employees who can apply arithmetic 
and geometry; use formulas; understand elementary statistics; read and interpret charts, graphs, 
tables, and instruments; use computers intelligently; and recognize mathematical issues hidden in 
work situations.  Scientists, too, want school graduates who can apply mathematics in real-world 
contexts, especially those in which the mathematics is implicit rather than explicit (as it generally 
is in school mathematics courses).  Like mathematicians, scientists expect a high degree of 
number and symbol sense as well as the ability to use a broad repertoire of basic tools from 
algebra and geometry.  In addition, mathematicians—but hardly anyone else—hope that students 
understand the importance of logical proof in mathematics and are able to work standard 
textbook mathematics problems. 
Where does this leave teachers?  Right in the middle of warring parties.  Mathematics teachers 
certainly want their students to master basic skills, especially those needed to do well on 
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standardized tests.  They also all want their students to be able to solve problems, to understand 
rather than memorize, to think mathematically, and to know enough algebra and geometry to be 
able to move on to higher mathematics in college or technical schools.  But for teachers to 
achieve any of these objectives, the various prospective owners of school mathematics must first 
sit around the table and hammer out an agreement on goals. 
This won't be easy.  In both of our countries, and in many others, the record of the traditional 
mathematics curriculum has not been especially strong.  It has satisfied neither employers nor 
parents, neither scientists nor politicians.  It has left most student quantitatively unprepared for 
the future.  Yet it has the weight of tradition on its side, together with all the infrastructure of 
textbooks, tests, and teacher training that go with it. 
I have argued for the value and efficacy of numeracy (or quantitative literacy) as an alternative to 
traditional approaches.  But numeracy is not now part of the curriculum—mathematics is.  So for 
any educational jurisdiction to move in this direction, they need to face forthrightly some very 
fundamental questions about mathematics: 

• Why is mathematics required in school? 
• How much high school mathematics can all students be expected to learn? 
• Is understanding a realistic (or even desirable) goal of school mathematics? 
• How important are proofs for school mathematics?  
• How important is it that problems be set in authentic contexts? 
• How many mathematics are there? 

This last question is perhaps the most important, and most intriguing.  (I leave it to you to tease 
out its full meaning.)  I suggest that candid answers to these questions will inevitably tilt the 
balance in favor of numeracy.  


